搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时变动态贝叶斯网络模型及其在皮层脑电网络连接中的应用

郭苗苗 王昱婧 徐桂芝 Griffin Milsap Nitish V. Thakor Nathan Crone

引用本文:
Citation:

时变动态贝叶斯网络模型及其在皮层脑电网络连接中的应用

郭苗苗, 王昱婧, 徐桂芝, Griffin Milsap, Nitish V. Thakor, Nathan Crone

Time-varying dynamic Bayesian network model and its application to brain connectivity using electrocorticograph

Guo Miao-Miao, Wang Yu-Jing, Xu Gui-Zhi, Griffin Milsap, Nitish V. Thakor, Nathan Crone
PDF
导出引用
  • 大脑执行语言的发音需要顶叶、颞叶、额叶等多个脑区协同完成. 皮层脑电具有高时间分辨率、较高空间分辨率和高信噪比等优势, 为研究大脑的电生理特性提供了重要的技术手段. 为了探索大脑对语言的动态处理过程, 利用多尺度皮层脑电(标准电极与微电极)分析了被试在执行音节朗读任务时的皮层脑电信号的高频gamma段特征, 提出采用时变动态贝叶斯网络构建单次实验任务的有向网络. 结果显示该方法能够快速有效地构建语言任务过程中标准电极、微电极以及二者之间的有向网络连接, 且反映了大规模网络(标准电极之间的连接)、局部网络(微电极之间的连接)以及大规模网络与局部网络之间的连接(标准电极与微电极之间的连接)随语言任务发生的动态改变. 研究还发现, 发音时刻之前与之后的网络连接存在显著性差异, 且发音方式不同的音节网络间也存在明显差异. 该研究将有助于癫痫等神经疾病的术前临床评估以及理解大脑对语言加工的实时处理过程.
    Cortical networks for speech production are believed to be widely distributed and highly organized over temporal, parietal, and frontal lobes areas in the human brain cortex. Effective connectivity demonstrates an inherent element of directional information propagation, and is therefore an information dense measure for the relevant activity over different cortical regions. Connectivity analysis of electrocorticographic (ECoG) recordings has been widely studied for its excellent signal-to-noise ratio as well as high temporal and spatial resolutions, providing an important approach to human electrophysiological researches. In this paper, we evaluate two patients undergoing invasive monitoring for seizure localization, in which both micro-electrode and standard clinical electrodes are used for ECoG recordings from speech-related cortical areas during syllable reading test. In order to explore the dynamics of speech processing, we extract the high gamma frequency band (70-110 Hz) power from ECoG signals by the multi-taper method. The trial-averaged results show that there is a consistent task-related increase in high gamma response for micro-ECoG electrodes for patient 1 and standard-ECoG electrodes for both patients 1 and 2. We demonstrate that high gamma response provides reliable speech localization compared with electrocortical stimulation. In addition, a directed connectivity network is built in single trial involving both standard ECoG electrodes and micro-ECoG arrays using time-varying dynamic Bayesian networks (TV-DBN). The TV-DBN is used to model the time-varying effective connectivity between pairs of ECoG electrodes selected by high gamma power, with less parameter optimization required and higher computational simplicity than short-time direct directed transfer function. We observe task-related connectivity modulations of connectivity between large-scale cortical networks (standard ECoG) and local cortical networks (micro-ECoG), as well as between large-scale and local cortical networks. In addition, cortical connectivity is modulated differently before and after response articulation onset. In other words, electrodes located over sensorimotor cortex show higher connectivity before articulation onset, while connectivity appears gradually between sensorimotor and auditory cortex after articulation onset. Also, the connectivity patterns observed during articulation are significantly different for three different places of articulation for the consonants. This study offers insights into preoperative evaluation during epilepsy surgery, dynamic real-time brain connectivity visualization, and assistance to understand the dynamic processing of language pronunciation in the language cortex.
      通信作者: 徐桂芝, gzxu@hebut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 50877023)和高等学校博士学科点专项科研基金(批准号: 20121317110002)资助的课题.
      Corresponding author: Xu Gui-Zhi, gzxu@hebut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50877023) and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20121317110002).
    [1]

    Lachaux J P, Axmacher N, Mormann F, Halgren E, Crone N E 2012 Prog. Neurobiol. 98 279

    [2]

    Qian T Y, Wang Y J, Zhou W J, Gao S K, Hong B 2013 J. Tsinghua Univ. (Sci. Technol.) 53 1334 (in Chinese) [钱天翼, 王昱婧, 周文静, 高上凯, 洪波 2013 清华大学学报(自然科学版) 53 1334]

    [3]

    Crone N E, Hao L, Hart J, Boatman D, Lesser R P, Irizarry R, Gordon B 2001 Neurology 57 2045

    [4]

    Crone N E, Sinai A, Korzeniewska A 2006 Prog. Brain Res. 159 275

    [5]

    Towle V L, Yoon H A, Castelle M, Edgar J C, Biassou N M, Frim D M, Spire J P, Kohrman M H 2008 Brain 131 2013

    [6]

    Crone N E, Boatman D, Gordon B, Hao L 2001 Clin. Neurophysiol. 112 565

    [7]

    Miller K J, Leuthardt E C, Schalk G, Rao R P N, Anderson N R, Moran D W, Miller J W, Ojemann J G 2007 J. Neurosci. 27 2424

    [8]

    Kellis S S, House P A, Thomson K E, Brown R, Greger B 2009 Neurosurg. Focus 27 E9

    [9]

    Bouchard K E, Mesgarani N, Johnson K, Chang E F 2013 Nature 495 327

    [10]

    Leuthardt E C, Freudenberg Z, Bundy D, Roland J 2009 Neurosurg. Focus 27 E10

    [11]

    Conant D, Bouchard K E, Chang E F 2014 Curr. Opin. Neurobiol. 24 63

    [12]

    Indefrey P, Levelt W J M 2004 Cognition 92 101

    [13]

    Hickok G, Poeppel D 2007 Nat. Rev. Neurosi. 8 393

    [14]

    Brown S, Laird A R, Pfordresher P Q, Thelen S M, Turkeltaub P, Liotti M 2009 Brain Cogn. 70 31

    [15]

    Price C J 2000 J. Anat. 197 335

    [16]

    Li L, Jin Z L, Li B 2011 Chin. Phys. B 20 038701

    [17]

    Yi G S, Wang J, Han C X, Deng B, Wei X L, Li N 2013 Chin. Phys. B 22 028702

    [18]

    Yin N, Xu G Z, Zhou Q 2013 Acta Phys. Sin. 62 118704 (in Chinese) [尹宁, 徐桂芝, 周倩 2013 62 118704]

    [19]

    Yang J, Chen S S, Huangfu H R 2015 Acta Phys. Sin. 64 058701 (in Chinese) [杨剑, 陈书燊, 皇甫浩然 2015 64 058701]

    [20]

    Zou C, Denby K J, Feng J 2009 BMC Bioinform. 10 122

    [21]

    Korzeniewska A, Crainiceanu C M, Kus R, Franaszczuk P J, Crone N E 2008 Hum. Brain Mapp. 29 1170

    [22]

    Qiang B, Wang Z Z 2008 J. Biomed. Engineer. Res. 27 145 (in Chinese) [强波, 王正志 2008 生物医学工程研究 27 145]

    [23]

    Rajapakse J C, Zhou J 2007 NeuroImage 37 749

    [24]

    Benz H L, Zhang H J, Bezerianos A, Acharya S, Crone N E, Zheng X, Thakor N V 2012 IEEE Trans. Neural Syst. Rehabil. Eng. 20 143

    [25]

    Song L, Kolar M, Xing E P 2009 Adv. Neural Infor. Proc. Syst. 22 1732

  • [1]

    Lachaux J P, Axmacher N, Mormann F, Halgren E, Crone N E 2012 Prog. Neurobiol. 98 279

    [2]

    Qian T Y, Wang Y J, Zhou W J, Gao S K, Hong B 2013 J. Tsinghua Univ. (Sci. Technol.) 53 1334 (in Chinese) [钱天翼, 王昱婧, 周文静, 高上凯, 洪波 2013 清华大学学报(自然科学版) 53 1334]

    [3]

    Crone N E, Hao L, Hart J, Boatman D, Lesser R P, Irizarry R, Gordon B 2001 Neurology 57 2045

    [4]

    Crone N E, Sinai A, Korzeniewska A 2006 Prog. Brain Res. 159 275

    [5]

    Towle V L, Yoon H A, Castelle M, Edgar J C, Biassou N M, Frim D M, Spire J P, Kohrman M H 2008 Brain 131 2013

    [6]

    Crone N E, Boatman D, Gordon B, Hao L 2001 Clin. Neurophysiol. 112 565

    [7]

    Miller K J, Leuthardt E C, Schalk G, Rao R P N, Anderson N R, Moran D W, Miller J W, Ojemann J G 2007 J. Neurosci. 27 2424

    [8]

    Kellis S S, House P A, Thomson K E, Brown R, Greger B 2009 Neurosurg. Focus 27 E9

    [9]

    Bouchard K E, Mesgarani N, Johnson K, Chang E F 2013 Nature 495 327

    [10]

    Leuthardt E C, Freudenberg Z, Bundy D, Roland J 2009 Neurosurg. Focus 27 E10

    [11]

    Conant D, Bouchard K E, Chang E F 2014 Curr. Opin. Neurobiol. 24 63

    [12]

    Indefrey P, Levelt W J M 2004 Cognition 92 101

    [13]

    Hickok G, Poeppel D 2007 Nat. Rev. Neurosi. 8 393

    [14]

    Brown S, Laird A R, Pfordresher P Q, Thelen S M, Turkeltaub P, Liotti M 2009 Brain Cogn. 70 31

    [15]

    Price C J 2000 J. Anat. 197 335

    [16]

    Li L, Jin Z L, Li B 2011 Chin. Phys. B 20 038701

    [17]

    Yi G S, Wang J, Han C X, Deng B, Wei X L, Li N 2013 Chin. Phys. B 22 028702

    [18]

    Yin N, Xu G Z, Zhou Q 2013 Acta Phys. Sin. 62 118704 (in Chinese) [尹宁, 徐桂芝, 周倩 2013 62 118704]

    [19]

    Yang J, Chen S S, Huangfu H R 2015 Acta Phys. Sin. 64 058701 (in Chinese) [杨剑, 陈书燊, 皇甫浩然 2015 64 058701]

    [20]

    Zou C, Denby K J, Feng J 2009 BMC Bioinform. 10 122

    [21]

    Korzeniewska A, Crainiceanu C M, Kus R, Franaszczuk P J, Crone N E 2008 Hum. Brain Mapp. 29 1170

    [22]

    Qiang B, Wang Z Z 2008 J. Biomed. Engineer. Res. 27 145 (in Chinese) [强波, 王正志 2008 生物医学工程研究 27 145]

    [23]

    Rajapakse J C, Zhou J 2007 NeuroImage 37 749

    [24]

    Benz H L, Zhang H J, Bezerianos A, Acharya S, Crone N E, Zheng X, Thakor N V 2012 IEEE Trans. Neural Syst. Rehabil. Eng. 20 143

    [25]

    Song L, Kolar M, Xing E P 2009 Adv. Neural Infor. Proc. Syst. 22 1732

  • [1] 伍静, 崔春凤, 欧阳滔, 唐超. 基于贝叶斯算法的5-7环缺陷石墨烯纳米带热电性能优化设计.  , 2023, 72(4): 047201. doi: 10.7498/aps.72.20222135
    [2] 郝望, 段睿, 杨坤德. 联合简正波水波和底波频散特性的贝叶斯地声参数反演.  , 2023, 72(5): 054303. doi: 10.7498/aps.72.20221717
    [3] 娄月申, 郭文军. 贝叶斯深度神经网络对于核质量预测的研究.  , 2022, 71(10): 102101. doi: 10.7498/aps.71.20212387
    [4] 梁艳美, 陆博, 古华光. 利用双慢变量的快慢变量分离分析新脑皮层神经元Wilson模型的复杂电活动.  , 2022, 71(23): 230502. doi: 10.7498/aps.71.20221416
    [5] 贺锋涛, 杜迎, 张建磊, 房伟, 李碧丽, 朱云周. Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究.  , 2019, 68(16): 164206. doi: 10.7498/aps.68.20190452
    [6] 杨棣, 王元美, 李军刚. 贝叶斯频率估计中频率的先验分布对有色噪声作用的影响.  , 2018, 67(6): 060301. doi: 10.7498/aps.67.20171911
    [7] 李倩倩, 阳凡林, 张凯, 郑炳祥. 不确定海洋环境中基于贝叶斯理论的声源运动参数估计方法.  , 2016, 65(16): 164304. doi: 10.7498/aps.65.164304
    [8] 尹诗白, 王卫星, 王一斌, 李大鹏, 邓箴. 贝叶斯迭代联合双边滤波的散焦图像快速盲复原.  , 2016, 65(23): 234202. doi: 10.7498/aps.65.234202
    [9] 李慧, 赵琳, 李亮. 基于贝叶斯压缩感知的周跳探测与修复方法.  , 2016, 65(24): 249101. doi: 10.7498/aps.65.249101
    [10] 文方青, 张弓, 贲德. 基于块稀疏贝叶斯学习的多任务压缩感知重构算法.  , 2015, 64(7): 070201. doi: 10.7498/aps.64.070201
    [11] 王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 改进的相对转移熵的癫痫脑电分析.  , 2014, 63(21): 218701. doi: 10.7498/aps.63.218701
    [12] 尹宁, 徐桂芝, 周茜. 磁刺激穴位复杂脑功能网络构建与分析.  , 2013, 62(11): 118704. doi: 10.7498/aps.62.118704
    [13] 赵佳, 喻莉, 李静茹. 社交网络中基于贝叶斯和半环代数模型的节点影响力计算机理.  , 2013, 62(13): 130201. doi: 10.7498/aps.62.130201
    [14] 王娇, 周云辉, 黄玉清, 江虹. 基于贝叶斯网络的认知引擎设计与重配置.  , 2013, 62(3): 038402. doi: 10.7498/aps.62.038402
    [15] 颜鹏程, 侯威, 钱忠华, 何文平, 孙建安. 基于贝叶斯理论的全球海温异常对500 hPa 温度场的影响分析.  , 2012, 61(13): 139202. doi: 10.7498/aps.61.139202
    [16] 郝崇清, 王江, 邓斌, 魏熙乐. 基于稀疏贝叶斯学习的复杂网络拓扑估计.  , 2012, 61(14): 148901. doi: 10.7498/aps.61.148901
    [17] 侯周国, 何怡刚, 李兵, 佘开, 朱彦卿. 基于软件无线电的无源超高频RFID标签性能测试.  , 2010, 59(8): 5606-5612. doi: 10.7498/aps.59.5606
    [18] 谢安生, 李盛涛, 郑晓泉. 高频电压下交联聚乙烯电缆绝缘中电树枝生长的动力学模型.  , 2008, 57(6): 3828-3833. doi: 10.7498/aps.57.3828
    [19] 谢 勇, 徐健学, 康艳梅, 杨红军, 胡三觉. 皮层脑电的非线性降噪.  , 2003, 52(5): 1121-1126. doi: 10.7498/aps.52.1121
    [20] 谢勇, 徐健学, 杨红军, 胡三觉. 皮层脑电时间序列的相空间重构及非线性特征量的提取.  , 2002, 51(2): 205-214. doi: 10.7498/aps.51.205
计量
  • 文章访问数:  6835
  • PDF下载量:  361
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-04
  • 修回日期:  2015-11-10
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map