搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

社交网络中基于贝叶斯和半环代数模型的节点影响力计算机理

赵佳 喻莉 李静茹

引用本文:
Citation:

社交网络中基于贝叶斯和半环代数模型的节点影响力计算机理

赵佳, 喻莉, 李静茹

Node influence calculation mechanism based on Bayesian and semiring algebraic model in social networks

Zhao Jia, Yu Li, Li Jing-Ru
PDF
导出引用
  • 本文综合考虑网络结构及节点间的互动等关键因素, 提出了一种节点影响力分布式计算机理. 首先根据节点交互行为在时域上的自相似特性, 运用带折扣因子的贝叶斯模型计算节点间的直接影响力; 然后运用半环模型来分析节点间接影响力的聚合; 最后根据社交网络的小世界性质及传播门限, 综上计算出节点的综合影响力. 仿真结果表明, 本文给出的模型能有效抑制虚假粉丝导致的节点影响力波动, 消除了虚假粉丝的出现对节点影响力计算带来的干扰, 从中选择影响力高的若干节点作为传播源节点, 可以将信息传播到更多数目的节点, 促进了信息在社交网络中的传播.
    In social networks, many applications and spreading depend on the nodes with high influence to do viral marketing, which indicates that nodes' influence should be measured in a comprehensive and reasonable way. The appearance of fake fans results in change of network topology and brings new challenge to topology-based traditional methods. This paper incorporates both the network topology and interactions among nodes into our new distribution mechanism of node influence calculation in social networks. Considering the similarity of node behaviors in time domain and several key factors, this paper presents by a discounted Bayesian model for direct influence between nodes at first. Then a semi-ring-based aggregation implements for indirect influence and the composite influence are obtained by the combination of both direct and indirect influences. Simulation shows that this mechanism not only performs well against fake fans attack and restrains the fluctuation of nodes' influence, but also spreads to more nodes when we choose several nodes with high influence under our method to be source nodes.
    • 基金项目: 国家自然科学基金重点项目(批准号: 61231010, 60972016)和湖北省杰出青年科学家基金(批准号: 2009CDA150)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61231010, 60972016), and the Funds of Distinguished Young Scientists (Grant No. 2009CDA150).
    [1]

    Carmen Camarero, Rebeca San José 2011 Computers in Human Behavior 27 2292

    [2]

    Eytan Bakshy, Jake M Hofman, Winter A Mason, Duncan J Watts 2011 Proceedings of the fourth ACM international conference on Web search and data mining p65

    [3]

    Mursel Tasgin, Haluk O Bingol 2012 Advs. Complex Syst. 15 1250061

    [4]

    Gu Y R, Xia L L 2012 Acta Phys. Sin. 61 238701 (in Chinese) [顾亦然, 夏玲玲 2012 61 238701]

    [5]

    Zhou J Y, Zhang Y L, Cheng J 2011 the 6th International Conference on Frontier of Computer Science and Technology (FCST-11) p1512

    [6]

    Newman M E J 2003 SIAM Review 45 167

    [7]

    Page L, Brin S, Motwani R, Winograd T 1999 Technical Report Stanford InfoLab 1999–66

    [8]

    L L Y, Zhang Y C, Yeung C H, Zhou T 2011 PLoS ONE 6 e21202

    [9]

    Ilyas M U, Shafip M Z, Liu A X, Radha H 2011 Infocom p561

    [10]

    Theodorakopoulos G, Baras J S 2006 IEEE Journal on Selected Areas in Communications 24 318

    [11]

    Lars Backstrom, Paolo Boldiy, Marco Rosay, Johan Ugander, Sebastiano Vigna, 2011 arXiv: 1111.4570

    [12]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [13]

    Albert-László Barabásí, Réka Albert 1999 Science 286 509

    [14]

    Wang X F, Li X, Chen G R 2012 Network Science: An Introduction (1st Edn.) (Beijing: Higher Education Press) (in Chinese) [汪小帆, 李翔, 陈关荣 2012 网络科学导论 (北京: 高等教育出版社)]

    [15]

    Guo J L, Wang L N 2007 Acta Phys. Sin. 56 5635 (in Chinese) [郭进利, 汪丽娜 2007 56 5635]

    [16]

    Opsahl T, Panzarasa P 2009 Social Networks 31 155

    [17]

    Newman M E J 2006 Phys. Rev. E 74 036104

    [18]

    Guimera R, Danon L, Diaz-Guilera A, Giralt F, Arenas A 2003 Phys. Rev. E 68 065103

    [19]

    Watts D J 2001 Proceedings of the National Academy of Science of the United States of America 99 5766

  • [1]

    Carmen Camarero, Rebeca San José 2011 Computers in Human Behavior 27 2292

    [2]

    Eytan Bakshy, Jake M Hofman, Winter A Mason, Duncan J Watts 2011 Proceedings of the fourth ACM international conference on Web search and data mining p65

    [3]

    Mursel Tasgin, Haluk O Bingol 2012 Advs. Complex Syst. 15 1250061

    [4]

    Gu Y R, Xia L L 2012 Acta Phys. Sin. 61 238701 (in Chinese) [顾亦然, 夏玲玲 2012 61 238701]

    [5]

    Zhou J Y, Zhang Y L, Cheng J 2011 the 6th International Conference on Frontier of Computer Science and Technology (FCST-11) p1512

    [6]

    Newman M E J 2003 SIAM Review 45 167

    [7]

    Page L, Brin S, Motwani R, Winograd T 1999 Technical Report Stanford InfoLab 1999–66

    [8]

    L L Y, Zhang Y C, Yeung C H, Zhou T 2011 PLoS ONE 6 e21202

    [9]

    Ilyas M U, Shafip M Z, Liu A X, Radha H 2011 Infocom p561

    [10]

    Theodorakopoulos G, Baras J S 2006 IEEE Journal on Selected Areas in Communications 24 318

    [11]

    Lars Backstrom, Paolo Boldiy, Marco Rosay, Johan Ugander, Sebastiano Vigna, 2011 arXiv: 1111.4570

    [12]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [13]

    Albert-László Barabásí, Réka Albert 1999 Science 286 509

    [14]

    Wang X F, Li X, Chen G R 2012 Network Science: An Introduction (1st Edn.) (Beijing: Higher Education Press) (in Chinese) [汪小帆, 李翔, 陈关荣 2012 网络科学导论 (北京: 高等教育出版社)]

    [15]

    Guo J L, Wang L N 2007 Acta Phys. Sin. 56 5635 (in Chinese) [郭进利, 汪丽娜 2007 56 5635]

    [16]

    Opsahl T, Panzarasa P 2009 Social Networks 31 155

    [17]

    Newman M E J 2006 Phys. Rev. E 74 036104

    [18]

    Guimera R, Danon L, Diaz-Guilera A, Giralt F, Arenas A 2003 Phys. Rev. E 68 065103

    [19]

    Watts D J 2001 Proceedings of the National Academy of Science of the United States of America 99 5766

  • [1] 李江, 刘影, 王伟, 周涛. 识别高阶网络传播中最有影响力的节点.  , 2024, 73(4): 048901. doi: 10.7498/aps.73.20231416
    [2] 伍静, 崔春凤, 欧阳滔, 唐超. 基于贝叶斯算法的5-7环缺陷石墨烯纳米带热电性能优化设计.  , 2023, 72(4): 047201. doi: 10.7498/aps.72.20222135
    [3] 娄月申, 郭文军. 贝叶斯深度神经网络对于核质量预测的研究.  , 2022, 71(10): 102101. doi: 10.7498/aps.71.20212387
    [4] 任卓明. 动态复杂网络中节点影响力的研究进展.  , 2020, 69(4): 048901. doi: 10.7498/aps.69.20190830
    [5] 李鑫, 赵城利, 刘阳洋. 有限步传播范围期望指标判别节点传播影响力.  , 2020, 69(2): 028901. doi: 10.7498/aps.69.20191313
    [6] 杨棣, 王元美, 李军刚. 贝叶斯频率估计中频率的先验分布对有色噪声作用的影响.  , 2018, 67(6): 060301. doi: 10.7498/aps.67.20171911
    [7] 肖云鹏, 李松阳, 刘宴兵. 一种基于社交影响力和平均场理论的信息传播动力学模型.  , 2017, 66(3): 030501. doi: 10.7498/aps.66.030501
    [8] 郭苗苗, 王昱婧, 徐桂芝, Griffin Milsap, Nitish V. Thakor, Nathan Crone. 时变动态贝叶斯网络模型及其在皮层脑电网络连接中的应用.  , 2016, 65(3): 038702. doi: 10.7498/aps.65.038702
    [9] 吴越, 杜亚军, 陈晓亮, 李显勇. 基于新曝光冲突性消息的网络舆论逆转研究.  , 2016, 65(3): 030502. doi: 10.7498/aps.65.030502
    [10] 闵磊, 刘智, 唐向阳, 陈矛, 刘三(女牙). 基于扩展度的复杂网络传播影响力评估算法.  , 2015, 64(8): 088901. doi: 10.7498/aps.64.088901
    [11] 苏晓萍, 宋玉蓉. 利用邻域“结构洞”寻找社会网络中最具影响力节点.  , 2015, 64(2): 020101. doi: 10.7498/aps.64.020101
    [12] 舒盼盼, 王伟, 唐明, 尚明生. 花簇分形无标度网络中节点影响力的区分度.  , 2015, 64(20): 208901. doi: 10.7498/aps.64.208901
    [13] 黄飞虎, 彭舰, 宁黎苗. 基于信息熵的社交网络观点演化模型.  , 2014, 63(16): 160501. doi: 10.7498/aps.63.160501
    [14] 王超, 刘骋远, 胡元萍, 刘志宏, 马建峰. 社交网络中信息传播的稳定性研究.  , 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [15] 苑卫国, 刘云, 程军军, 熊菲. 微博双向关注网络节点中心性及传播 影响力的分析.  , 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [16] 王娇, 周云辉, 黄玉清, 江虹. 基于贝叶斯网络的认知引擎设计与重配置.  , 2013, 62(3): 038402. doi: 10.7498/aps.62.038402
    [17] 李勇军, 刘尊, 于会. 基于最大熵模型的导师-学生关系推测.  , 2013, 62(16): 168902. doi: 10.7498/aps.62.168902
    [18] 颜鹏程, 侯威, 钱忠华, 何文平, 孙建安. 基于贝叶斯理论的全球海温异常对500 hPa 温度场的影响分析.  , 2012, 61(13): 139202. doi: 10.7498/aps.61.139202
    [19] 郝崇清, 王江, 邓斌, 魏熙乐. 基于稀疏贝叶斯学习的复杂网络拓扑估计.  , 2012, 61(14): 148901. doi: 10.7498/aps.61.148901
    [20] 熊熙, 胡勇. 基于社交网络的观点传播动力学研究.  , 2012, 61(15): 150509. doi: 10.7498/aps.61.150509
计量
  • 文章访问数:  6639
  • PDF下载量:  1181
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-05
  • 修回日期:  2013-03-19
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map