搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaS电子结构和热力学性质的第一性原理计算

吴若熙 刘代俊 于洋 杨涛

引用本文:
Citation:

CaS电子结构和热力学性质的第一性原理计算

吴若熙, 刘代俊, 于洋, 杨涛

First-principles investigations on structure and thermodynamic properties of CaS under high pressures

Wu Ruo-Xi, Liu Dai-Jun, Yu Yang, Yang Tao
PDF
导出引用
  • 根据密度泛函理论, 采用平面波赝势和广义梯度方法, 计算了CaS的晶体结构和电子结构. 通过准谐徳拜模型预测了硫化钙的体积变化率、体弹模量、热膨胀系数分别与温度和压强的变化关系, 以及热容和温度的变化关系.
    First-principles calculations of the electronic structure and thermodynamic properties of calcium sulfide (CaS) have been carried out by the plane-wave pseudopotential density functional theory method. The calculated values of lattice constant, elastic modulus and its derivative for CaS under zero pressure and zero temperature, agree well with the experimental data and some of the existing model calculations. The band structure and density of states are discussed in detail. Moreover, the dependences of the volume variation, bulk elastic modulus, thermal expansion coefficient and heat capacity on pressure have been investigated for the first time, so far as we know. It is concluded that under the condition of zero temperature (0 K) and zero pressure (0 GPa), the volume is 44.6 3 when the energy of the crystal unit cell reaches a minimum in the structural model of CaS, which is the most stable system. The energy band of CaS is mainly composed of low band gap, valence band and conduction band, the GV-XC band gap of CaS is 2.435 eV. The DOS results show that the valence band is mainly of Ca 3s and S 3p, while the conduction band is mainly of Ca 4d and a small amount of S 3p. At a certain temperature, the volume change rate, heat capacity and thermal expansion coefficient decrease with rising pressure, and the body elastic modulus B increases simultaneously. In contrast, when the pressure is constant, the volume change rate and body elastic modulus B decrease with the increase of temperature, while the thermal expansion coefficient and heat capacity increase as the temperature rises. When the temperature is higher than a certain value, the heat capacity CV is close to the Dulong-Petit limit, and the effect of temperature on the heat capacity is minimal. Furthermore, under the condition of low pressures, the influence of temperature on thermal expansion coefficient is greater than that of the pressure on it.
      通信作者: 刘代俊, liudj@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21076131)资助的课题.
      Corresponding author: Liu Dai-Jun, liudj@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21076131).
    [1]

    Junzhe Z, Chongyu W 2005 Chinese. Sci. Bull. 50 1823

    [2]

    Liu Z L, Cai L C, Chen X R, Jing F Q 2008 Phys. Rev. B 77 024103

    [3]

    Wang H Y, Chen X R, Zhu W J, Cheng Y 2005 Phys. Rev. B 72 172502

    [4]

    Lu L Y, Tan J J, Jia O H, Chen X R 2007 Physica. B 399 66

    [5]

    Zhang S H, Liu F T, Cheng X H 2012 Journal of Yibin University 12 50 (in Chinese) [张淑 华,柳福提,程晓洪 2012 宜宾学院学报 12 50]

    [6]

    Shaukat A, Saeed Y, Ikram N, Akbarzadeh H 2008 The European Physical Journal B 62 439

    [7]

    He J Y, Long Z W, Long C Y, Cai S H 2010 Acta Phys. Sin. 59 1651 (in Chinese) [何建勇, 隆正文, 龙超云, 蔡绍洪 2010 59 1651]

    [8]

    Ponc S, Bertrand B, Smet P F, Poelman D, Mikami M, Gonze X 2013 Opt. Mater. 35 1477

    [9]

    Xiao H P, Zhou J H, Liu J Z, Cao X Y, Fan H Y, Cen K F 2006 Journal of Chemical Engineering of Chinese Universities 20 494 (in Chinese) [肖海平, 周俊虎, 刘建忠, 曹欣 玉, 范红宇, 岑可法 2006 高校化学工程学报 20 494]

    [10]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [11]

    Blanco M, Francisco E, Luana V 2004 Comput. Phys. Commun. 158 57

    [12]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos J 1992 Rev. Mod. Phys. 64 1045

    [13]

    Milman V, Winkler B, White J, Pickard C, Payne M, Akhmatskaya E, Nobes R 2000 Int. J. Quantum. Chem. 77 895

    [14]

    Blanco M, Pends A M, Francisco E, Recio J, Franco R 1996 Journal of Molecular Structure: THEOCHEM 368 245

    [15]

    Flrez M, Recio J, Francisco E, Blanco M, Pends A M 2002 Phys. Rev. B 66 144112

    [16]

    Yakel H 1958 Acta. Cryst. 11 46

    [17]

    Murnaghan F 1944 Proceedings of the national academy of sciences of the United States of America 30 244

    [18]

    Cortona P, Masri P 1998 J. Phys.: Condens. Matter 10 8947

    [19]

    Cortona P, Monteleone A V, Becker P 1995 Int. J. Quantum. Chem. 56 831

    [20]

    Verma A 2009 Physica Status Solidi (b) 246 345

    [21]

    Zhang S, Li H, Li H, Zhou S, Cao X 2007 The Journal of Physical Chemistry B 111 1304

    [22]

    Cortona P, Masri P 1998 J. Phys.: Condens. Matters 10 8947

    [23]

    Luo H, Greene R G, Ghandehari K, Li T, Ruoff A L 1994 Phys. Rev. B 50 16232

    [24]

    Wang F, Wu J, Xia C, Hu C, Hu C, Zhou P, Shi L, Ji Y, Zheng Z, Liu X 2014 Journal of Alloys and Compounds 597 50

    [25]

    Cheng Y, Zhang T, Qi Y Y 2014 International Journal of Thermophysics 35 145

    [26]

    Deringer V L, Stoffel R P, Dronskowski R 2014 Crystal Growth Design 14 871

  • [1]

    Junzhe Z, Chongyu W 2005 Chinese. Sci. Bull. 50 1823

    [2]

    Liu Z L, Cai L C, Chen X R, Jing F Q 2008 Phys. Rev. B 77 024103

    [3]

    Wang H Y, Chen X R, Zhu W J, Cheng Y 2005 Phys. Rev. B 72 172502

    [4]

    Lu L Y, Tan J J, Jia O H, Chen X R 2007 Physica. B 399 66

    [5]

    Zhang S H, Liu F T, Cheng X H 2012 Journal of Yibin University 12 50 (in Chinese) [张淑 华,柳福提,程晓洪 2012 宜宾学院学报 12 50]

    [6]

    Shaukat A, Saeed Y, Ikram N, Akbarzadeh H 2008 The European Physical Journal B 62 439

    [7]

    He J Y, Long Z W, Long C Y, Cai S H 2010 Acta Phys. Sin. 59 1651 (in Chinese) [何建勇, 隆正文, 龙超云, 蔡绍洪 2010 59 1651]

    [8]

    Ponc S, Bertrand B, Smet P F, Poelman D, Mikami M, Gonze X 2013 Opt. Mater. 35 1477

    [9]

    Xiao H P, Zhou J H, Liu J Z, Cao X Y, Fan H Y, Cen K F 2006 Journal of Chemical Engineering of Chinese Universities 20 494 (in Chinese) [肖海平, 周俊虎, 刘建忠, 曹欣 玉, 范红宇, 岑可法 2006 高校化学工程学报 20 494]

    [10]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [11]

    Blanco M, Francisco E, Luana V 2004 Comput. Phys. Commun. 158 57

    [12]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos J 1992 Rev. Mod. Phys. 64 1045

    [13]

    Milman V, Winkler B, White J, Pickard C, Payne M, Akhmatskaya E, Nobes R 2000 Int. J. Quantum. Chem. 77 895

    [14]

    Blanco M, Pends A M, Francisco E, Recio J, Franco R 1996 Journal of Molecular Structure: THEOCHEM 368 245

    [15]

    Flrez M, Recio J, Francisco E, Blanco M, Pends A M 2002 Phys. Rev. B 66 144112

    [16]

    Yakel H 1958 Acta. Cryst. 11 46

    [17]

    Murnaghan F 1944 Proceedings of the national academy of sciences of the United States of America 30 244

    [18]

    Cortona P, Masri P 1998 J. Phys.: Condens. Matter 10 8947

    [19]

    Cortona P, Monteleone A V, Becker P 1995 Int. J. Quantum. Chem. 56 831

    [20]

    Verma A 2009 Physica Status Solidi (b) 246 345

    [21]

    Zhang S, Li H, Li H, Zhou S, Cao X 2007 The Journal of Physical Chemistry B 111 1304

    [22]

    Cortona P, Masri P 1998 J. Phys.: Condens. Matters 10 8947

    [23]

    Luo H, Greene R G, Ghandehari K, Li T, Ruoff A L 1994 Phys. Rev. B 50 16232

    [24]

    Wang F, Wu J, Xia C, Hu C, Hu C, Zhou P, Shi L, Ji Y, Zheng Z, Liu X 2014 Journal of Alloys and Compounds 597 50

    [25]

    Cheng Y, Zhang T, Qi Y Y 2014 International Journal of Thermophysics 35 145

    [26]

    Deringer V L, Stoffel R P, Dronskowski R 2014 Crystal Growth Design 14 871

  • [1] 袁文翎, 姚碧霞, 李喜, 胡顺波, 任伟. 第一性原理计算研究γ'-Co3(V, M) (M = Ti, Ta)相的结构稳定性、力学和热力学性质.  , 2024, 73(8): 086104. doi: 10.7498/aps.73.20231755
    [2] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究.  , 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] 赵玉娜, 丛红璐, 成爽, 于娜, 高涛, 马俊刚. 第一性原理研究Li2NH的晶格动力学和热力学性质.  , 2019, 68(13): 137102. doi: 10.7498/aps.68.20190139
    [4] 黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波. Al和O间隙原子对-Al2O3热力学性质影响的第一性原理计算.  , 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [5] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质.  , 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [6] 马振宁, 周全, 汪青杰, 王逊, 王磊. Mg-Y-Cu合金长周期有序相热力学稳定性及其电子结构的第一性原理研究.  , 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [7] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究.  , 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [8] 翟东, 韦昭, 冯志芳, 邵晓红, 张平. 铜钨合金高温高压性质的第一性原理研究.  , 2014, 63(20): 206501. doi: 10.7498/aps.63.206501
    [9] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究.  , 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [10] 赵玉娜, 高涛, 吕金钟, 马俊刚. Li-N-H储氢体系热力学性质的第一性原理研究.  , 2013, 62(14): 143101. doi: 10.7498/aps.62.143101
    [11] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算.  , 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [12] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质.  , 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [13] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究.  , 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [14] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究.  , 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [15] 王斌, 刘颖, 叶金文. 高压下TiC的弹性、电子结构及热力学性质的第一性原理计算.  , 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [16] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究.  , 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [17] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质.  , 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [18] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究.  , 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [19] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算.  , 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
计量
  • 文章访问数:  7471
  • PDF下载量:  378
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-13
  • 修回日期:  2015-10-16
  • 刊出日期:  2016-01-20

/

返回文章
返回
Baidu
map