-
提高黑腔辐射温度对高能量密度物理研究, 尤其是惯性约束聚变研究至关重要. 提高黑腔腔壁再发射率是增强黑腔辐射温度的一个有效措施. 理论研究发现低密度泡沫材料能够降低腔壁能量损失, 进而提高再发射率. 在神光Ⅲ原型激光装置上开展了泡沫金和固体金再发射能流对比测量实验, 证实了该理论研究. 实验利用透射光栅得到具有空间分辨和谱分辨的X射线发射, 测量结果表明在190 eV的黑腔辐射场作用下, 0.4 g/cc密度的泡沫金可比固体金提升约20%的X射线能流发射, 并且增加的发射以1 keV以下的低能能段为主. 自相似解得到的理论结果和MULTI 1D模拟计算的结果均表明泡沫金可提高腔壁再发射能流, 与实验结果定性一致. 研究结果表明, 泡沫金作为黑腔腔壁材料可提高腔壁再发射率, 增强黑腔辐射温度, 具有诱人的应用前景.It is important to improve the hohlraum radiation temperature for the research of high energy density physics, especially for study of inertial confinement fusion. Increasing the wall reemission ratio is an effective way to improve the temperature. It is found in theory that low density foam could reduce hohlraum wall energy loss, and then increase hohlraum temperature. In previous studies, experiments have shown that laser-to-X-ray conversion is enhanced by Au foam. However, improving reemission ratio is more important to increase hohlraum radiation temperature, because most of energy is lost in the wall.In this paper, we report our experiments carried out on SGⅢ prototype to compare the X-ray flux reemitted by Au foam and that by Au. For the experimental design, Au solid and Au foam are irradiated symmetrically along the axis by hohlraum radiation source Tr(t), which is assessed by broadband X-ray spectrometer flat-response X-ray diodes. The measured peak temperature is about 190 eV. Reemission flux from sample is measured by transmission grating spectrometer (TGS). The space-resolved image for pure Au sample shows that the hohlraum radiation is asymmetrical along the axis in the experimental conditions, temperature of top is higher than that at the bottom, which is consistent with simulation results obtained by using IRAD3D code. In order to compare the reemission flux from Au solid sample and that from Au foam sample in same conditions, we need to correct the symmetry of hohlraum radiation. By multiplying the ratio of top flux to bottom flux in pure Au target by the bottom flux in Au-Au foam target, where Au foam is on, we make sure that they are ablated by the same radiation source. The calculated results show that X-ray flux is increased by 20% by Au foam of 0.4 g/cc density when the hohlraum temperature is 190 eV. The typical observed time-integrated X-ray reemission spectra for Au solid and Au foam by TGS are also shown. We see that N-band and O-band reemission are clearly enhanced by Au foam, and the O-band reemission is almost the same as M-band reemission. The increased flux concentrates below 1 keV of the soft X-ray emission.The self-similar solution results and MULTI 1D simulation results show that the wall loss energy fraction is saved by Au foam, whose relation to reemission flux can be described by a simple expression. The theoretical solution shows that the emission flux increases about 10%, and the MULTI simulation indicates that the emission flux increases about 6.8%. They are in qualitative agreement with the experiments results. These results show an alluring prospect for Au foam to be used as hohlraum wall.
-
Keywords:
- reemission ratio /
- Au foam /
- hohlraum /
- radiation ablate
[1] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339
[2] Meyers M A, Gregori F, Kad B K, Schneider M S, Kalantar D H, Remington B A, Ravichandran G, Boehly T, Wark J S 2003 Acta Mater. 51 1211
[3] Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Pain J C, Gilleron F, Blancard C, Cosse P, Faussurier G, Chandler G A, Nash T J, Nielsen D S, Lake P W 2008 Rev. Sci. Instrum. 79 113104
[4] Li L L, Zhang L, Jiang S E, Guo L, Qing B, Li Z C, Zhang J Y, Yang J M, Ding Y K 2014 Appl. Phys. Lett. 104 054106
[5] Zhang J Y, Yang J M, Jiang S E, Li Y S, Yang G H, Ding Y N, Huang Y X, Hu X 2010 Chin. Phys. B 19 025201
[6] Amendt P, Landen O L, Robey H F, Li C K, Petrasso R D 2010 Phys. Rev. Lett. 105 115005
[7] Li S W, Song T M, Yi R Q, Cui Y L, Jiang X H, Wang Z B, Yang J M, Jiang S E 2011 Acta Phys. Sin. 60 055207 (in Chinese) [李三伟, 宋天明, 易荣清, 崔延莉, 蒋小华, 王哲斌, 杨家敏, 江少恩 2011 60 055207]
[8] Atzeni S, Merer-ter-vehn J 2004 The Physics of Inertial Fusion (1st Ed.) (New York: Oxford University Press)
[9] Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wilkens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311
[10] Suter L, Rothenberg J, Munro D, Wonterghen B V, Haan S 2000 Phys. Plasmas 7 2092
[11] Chaurasia S, Munda D S, Tripathi S, Kumar M, Gupta N K, Dhareshwar L J, Bajaj P N 2010 J. Phys.: Conf. Ser. 208 012093
[12] Li X, Lan K, Meng X J, He X T, Lai D X, Feng T G 2010 Laser Part. Beams 28 75
[13] Rosen M D, Hammer J H 2005 Phys. Rev. E 72 056403
[14] Zhang L, Ding Y K, Yang J M, Wu S C, Jiang S E 2011 Phys. Plasmas 18 033301
[15] Shang W L, Yang J M, Dong Y S 2013 Appl. Phys. Lett. 102 094105
[16] Dong Y S, Zhang L, Yang J M, Shang W L 2013 Phys. Plasmas 20 123102
[17] Young P E, Rosen M D, Hammer J H, Hsing W S, Glendinning S G, Turner R E, Kirkwood R, Schein J, Sorce C, Satcher J H, Hamza A, Reibold R A, Hibbard R, Landen O, Reighard A 2008 Phys. Rev. Lett. 101 035001
[18] Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504
[19] Huang Y B, Jiang S E, Li H Y, Wang Q F, Chen L P 2014 Comput. Phys. Commun. 185 459
[20] Shang W L, Zhu T, Kuang L Y, Zhang W H, Zhao Y, Xiong G, Yi R Q, Li S W, Yang J M 2013 Acta Phys. Sin. 62 170602 (in Chinese) [尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏 2013 62 170602]
[21] Ramis R, Schmalz R, Meyer-ter-vehn J 1988 Comput. Phys. Commun. 49 475
[22] Sigel R, Pakula R, Sakabe S, Tsakiris D 1988 Phys. Rev. A 38 5779
[23] Jones O S, Glenzer S H, Suter L J, Turner R E, Campbell K M, Dewald E L, Hammel B A, Hammer J H, Kauffman R L, Landen O L, Rosen M D, Wallace R J, Weber F A 2004 Phys. Rev. Lett. 93 065002
-
[1] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339
[2] Meyers M A, Gregori F, Kad B K, Schneider M S, Kalantar D H, Remington B A, Ravichandran G, Boehly T, Wark J S 2003 Acta Mater. 51 1211
[3] Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Pain J C, Gilleron F, Blancard C, Cosse P, Faussurier G, Chandler G A, Nash T J, Nielsen D S, Lake P W 2008 Rev. Sci. Instrum. 79 113104
[4] Li L L, Zhang L, Jiang S E, Guo L, Qing B, Li Z C, Zhang J Y, Yang J M, Ding Y K 2014 Appl. Phys. Lett. 104 054106
[5] Zhang J Y, Yang J M, Jiang S E, Li Y S, Yang G H, Ding Y N, Huang Y X, Hu X 2010 Chin. Phys. B 19 025201
[6] Amendt P, Landen O L, Robey H F, Li C K, Petrasso R D 2010 Phys. Rev. Lett. 105 115005
[7] Li S W, Song T M, Yi R Q, Cui Y L, Jiang X H, Wang Z B, Yang J M, Jiang S E 2011 Acta Phys. Sin. 60 055207 (in Chinese) [李三伟, 宋天明, 易荣清, 崔延莉, 蒋小华, 王哲斌, 杨家敏, 江少恩 2011 60 055207]
[8] Atzeni S, Merer-ter-vehn J 2004 The Physics of Inertial Fusion (1st Ed.) (New York: Oxford University Press)
[9] Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wilkens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311
[10] Suter L, Rothenberg J, Munro D, Wonterghen B V, Haan S 2000 Phys. Plasmas 7 2092
[11] Chaurasia S, Munda D S, Tripathi S, Kumar M, Gupta N K, Dhareshwar L J, Bajaj P N 2010 J. Phys.: Conf. Ser. 208 012093
[12] Li X, Lan K, Meng X J, He X T, Lai D X, Feng T G 2010 Laser Part. Beams 28 75
[13] Rosen M D, Hammer J H 2005 Phys. Rev. E 72 056403
[14] Zhang L, Ding Y K, Yang J M, Wu S C, Jiang S E 2011 Phys. Plasmas 18 033301
[15] Shang W L, Yang J M, Dong Y S 2013 Appl. Phys. Lett. 102 094105
[16] Dong Y S, Zhang L, Yang J M, Shang W L 2013 Phys. Plasmas 20 123102
[17] Young P E, Rosen M D, Hammer J H, Hsing W S, Glendinning S G, Turner R E, Kirkwood R, Schein J, Sorce C, Satcher J H, Hamza A, Reibold R A, Hibbard R, Landen O, Reighard A 2008 Phys. Rev. Lett. 101 035001
[18] Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504
[19] Huang Y B, Jiang S E, Li H Y, Wang Q F, Chen L P 2014 Comput. Phys. Commun. 185 459
[20] Shang W L, Zhu T, Kuang L Y, Zhang W H, Zhao Y, Xiong G, Yi R Q, Li S W, Yang J M 2013 Acta Phys. Sin. 62 170602 (in Chinese) [尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏 2013 62 170602]
[21] Ramis R, Schmalz R, Meyer-ter-vehn J 1988 Comput. Phys. Commun. 49 475
[22] Sigel R, Pakula R, Sakabe S, Tsakiris D 1988 Phys. Rev. A 38 5779
[23] Jones O S, Glenzer S H, Suter L J, Turner R E, Campbell K M, Dewald E L, Hammel B A, Hammer J H, Kauffman R L, Landen O L, Rosen M D, Wallace R J, Weber F A 2004 Phys. Rev. Lett. 93 065002
计量
- 文章访问数: 6385
- PDF下载量: 272
- 被引次数: 0