搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺铒光纤中方波信号高次谐波的快慢光特性

王甫 王智 吴重庆 刘国栋 毛雅亚 孙振超 李强

引用本文:
Citation:

掺铒光纤中方波信号高次谐波的快慢光特性

王甫, 王智, 吴重庆, 刘国栋, 毛雅亚, 孙振超, 李强

Superluminal and slow light of high-order harmonic for rectangle signal in erbium-doped fiber

Wang Fu, Wang Zhi, Wu Chong-Qing, Liu Guo-Dong, Mao Ya-Ya, Sun Zhen-Chao, Li Qiang
PDF
导出引用
  • 光纤中方波信号的慢光技术在全光通信和光纤传感等领域具有重要的应用前景. 提出了谐波相对延时量的度量方法, 分别采用速率方程和相干布居振荡理论, 对掺铒光纤中方波信号的基波和高次谐波的快慢光特性进行了研究. 在无抽运光输入情况下, 改变入射光功率, 入射探测光的基波最大相对延时量能达到20%, 且存在实现最大相对延时量的入射光功率为8 mW; 在有抽运光输入的情况下, 改变信号光增益, 入射探测光的基波相对超前量同样能达到-20%, 且随着信号光增益的增大而增加. N次谐波(N=1, 3, 5, 7, …)在频率f/N(f为基波信号最大延时量对应的调制频率)处有最大相对延时量, 且它们的最大延时量相同, 频率处于相干布居振荡引起的光谱烧孔带宽内.
    The slow light technology of the rectangle signal propagating in erbium-doped fiber (EDF) has potential applications in the fields of all optical communication and optical fiber sensing. The method of using harmonics fractional delay to evaluate the slow/fast light of rectangle signal propagating in the EDF is proposed, and the characteristics of phase delay for fundamental and high order harmonics components are analyzed for the first time based on the rate equations and the theory of the coherent population oscillations (CPO). We experimentally demonstrate the dependences of fundamental fractional delay on input power and optical gain. The maximum fractional delay 20% is obtained when the input power is about 8 mW without pump. The negative fractional delay-20% is also achieved and it will increase with the rising of the optical gain. The Nth-order fractional delays (N=1, 3, 5, 7) of rectangle signal propagating in EDF without pump are investigated. Their maximum fractional delays are all about 0.07 and the corresponding fundamental modulation frequencies are 22, 7, 5 and 3 Hz, respectively. What is more, the Nth-order fractional delays (N=1, 3, 5, 7) with pump are also investigated. Their maximum fractional delays are all about-0.135 and the corresponding fundamental modulation frequencies are 175, 58, 35 and 25 Hz, respectively. The experiments indicate that the maximum Nth-order fractional delays are equal and they will be achieved at the frequency f/N (the fundamental harmonic fractional delay is maximum at the modulation frequency f). The results show good agreement with CPO and the frequency is also located in the spectral burning hole.
      通信作者: 吴重庆, cqwu@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61275075, 61571035)和北京市自然科学基金(批准号: 4144080, 4132035)资助的课题.
      Corresponding author: Wu Chong-Qing, cqwu@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275075, 61571035) and the Beijing Natural Science Foundation, China (Grant Nos. 4144080, 4132035).
    [1]

    Wang X X, Sun J X, Sun Y H, Li A J, Chen Y, Zhang X J, Kang Z H, Wang L 2015 Chin. Phys. B 24 074204

    [2]

    Wang N, Zhang Y D, Wang H, Tian H, Qiu W, Wang J F, Yuan P 2010 Chin. Phys. B 19 014216

    [3]

    Zhao Y, Zhao H W 2009 Opt. Laser Technol. 41 517

    [4]

    Pant R, Byrnes A, Christopher G 2012 Opt. Lett. 37 969

    [5]

    Zheng D, Pan W 2011 Acta Phys. Sin. 60 064210 (in Chinese) [郑狄, 潘炜 2011 60 064210]

    [6]

    Sharping J E, Okawachi Y, Gaeta A L 2005 Opt. Express 13 6092

    [7]

    Zhang J P, Hernandez G, Zhu Y F 2008 Opt. Lett. 33 46

    [8]

    Zhu N, Wang Y, Ren Q, Zhu L, Yuan M, An G 2014 Opt. Laser Technol. 57 154

    [9]

    Schweinsberg A, Lepeshkin N N, Bigelow M S, Boyd R W, Jarabo S 2006 Europhys. Lett. 73 218

    [10]

    Bigelow M S, Lepeshkin N N, Shin H, Boyd R W 2006 J. Phys. Condens. Matter. 18 3117

    [11]

    Shin H, Schweinsberg A, Gehring G, Schwertz K, Chang H J, Boyd R W, Park Q H 2007 Opt. Lett. 32 906

    [12]

    Bigelow M S, Lepeshkin N N, Boyd R W 2003 Phys. Rev. Lett. 90 113903

    [13]

    Melle S, Calderón O G, Carreño F, Cabrera E, Antón M A, Jarabo S 2007 Opt. Commun. 279 53

    [14]

    Calderón O G, Melle S, Antón M A, Carreño F, Yáñez F A, Granado E C 2008 Phys. Rev. A 78 053812

    [15]

    Yáñez F A, Calderón O G, Melle S 2010 J. Opt. 12 104002

    [16]

    Zhang Y D, Qiu W, Ye J B, Wang N Wang J F, Tian H 2008 Opt. Commun. 281 2633

    [17]

    Qiu W, Zhang Y D, Ye J B, Wang N 2008 Appl. Opt. 47 1781

    [18]

    Ye J B, Zhang Y D, Qiu W, Xu H W 2008 Chin. J. Lasers 35 563 (in Chinese) [叶建波, 掌蕴东, 邱巍, 徐焕文 2008 中国激光 35 563]

    [19]

    Qiu W, Ma Y C, L P, Liu D, Xu X J, Zhang C H 2012 Acta Phys. Sin. 61 094204 (in Chinese) [邱巍, 马英驰, 吕品, 刘典, 徐晓娟, 张程华 2012 61 094204]

    [20]

    Qiu W, Gao B, Lin P, Zhou J T, Li J, Jiang Q L, L P, Ma Y C 2013 Acta Phys. Sin. 62 214205 (in Chinese) [邱巍, 高波, 林鹏, 周婧婷, 李佳, 蒋秋莉, 吕品, 马英驰 2013 62 214205]

    [21]

    Novak S, Moesle A 2002 J. Lightwave Technol. 20 975

    [22]

    Wang F, Wu C Q, Wang Z, Liu G D, Sun Z C 2014 Chin. Phys. Lett. 31 034207

    [23]

    Wang F, Wu C Q, Wang Z, Mao Y Y, Sun Z C 2013 Proc. SPIE 9043 Beijing, November 11-15, 2013 p1

    [24]

    Wang F, Wu C Q, Wang Z, Sun Z C, Mao Y Y, Liu L L, Li Q 2015 Opt. Commun. 352 96

  • [1]

    Wang X X, Sun J X, Sun Y H, Li A J, Chen Y, Zhang X J, Kang Z H, Wang L 2015 Chin. Phys. B 24 074204

    [2]

    Wang N, Zhang Y D, Wang H, Tian H, Qiu W, Wang J F, Yuan P 2010 Chin. Phys. B 19 014216

    [3]

    Zhao Y, Zhao H W 2009 Opt. Laser Technol. 41 517

    [4]

    Pant R, Byrnes A, Christopher G 2012 Opt. Lett. 37 969

    [5]

    Zheng D, Pan W 2011 Acta Phys. Sin. 60 064210 (in Chinese) [郑狄, 潘炜 2011 60 064210]

    [6]

    Sharping J E, Okawachi Y, Gaeta A L 2005 Opt. Express 13 6092

    [7]

    Zhang J P, Hernandez G, Zhu Y F 2008 Opt. Lett. 33 46

    [8]

    Zhu N, Wang Y, Ren Q, Zhu L, Yuan M, An G 2014 Opt. Laser Technol. 57 154

    [9]

    Schweinsberg A, Lepeshkin N N, Bigelow M S, Boyd R W, Jarabo S 2006 Europhys. Lett. 73 218

    [10]

    Bigelow M S, Lepeshkin N N, Shin H, Boyd R W 2006 J. Phys. Condens. Matter. 18 3117

    [11]

    Shin H, Schweinsberg A, Gehring G, Schwertz K, Chang H J, Boyd R W, Park Q H 2007 Opt. Lett. 32 906

    [12]

    Bigelow M S, Lepeshkin N N, Boyd R W 2003 Phys. Rev. Lett. 90 113903

    [13]

    Melle S, Calderón O G, Carreño F, Cabrera E, Antón M A, Jarabo S 2007 Opt. Commun. 279 53

    [14]

    Calderón O G, Melle S, Antón M A, Carreño F, Yáñez F A, Granado E C 2008 Phys. Rev. A 78 053812

    [15]

    Yáñez F A, Calderón O G, Melle S 2010 J. Opt. 12 104002

    [16]

    Zhang Y D, Qiu W, Ye J B, Wang N Wang J F, Tian H 2008 Opt. Commun. 281 2633

    [17]

    Qiu W, Zhang Y D, Ye J B, Wang N 2008 Appl. Opt. 47 1781

    [18]

    Ye J B, Zhang Y D, Qiu W, Xu H W 2008 Chin. J. Lasers 35 563 (in Chinese) [叶建波, 掌蕴东, 邱巍, 徐焕文 2008 中国激光 35 563]

    [19]

    Qiu W, Ma Y C, L P, Liu D, Xu X J, Zhang C H 2012 Acta Phys. Sin. 61 094204 (in Chinese) [邱巍, 马英驰, 吕品, 刘典, 徐晓娟, 张程华 2012 61 094204]

    [20]

    Qiu W, Gao B, Lin P, Zhou J T, Li J, Jiang Q L, L P, Ma Y C 2013 Acta Phys. Sin. 62 214205 (in Chinese) [邱巍, 高波, 林鹏, 周婧婷, 李佳, 蒋秋莉, 吕品, 马英驰 2013 62 214205]

    [21]

    Novak S, Moesle A 2002 J. Lightwave Technol. 20 975

    [22]

    Wang F, Wu C Q, Wang Z, Liu G D, Sun Z C 2014 Chin. Phys. Lett. 31 034207

    [23]

    Wang F, Wu C Q, Wang Z, Mao Y Y, Sun Z C 2013 Proc. SPIE 9043 Beijing, November 11-15, 2013 p1

    [24]

    Wang F, Wu C Q, Wang Z, Sun Z C, Mao Y Y, Liu L L, Li Q 2015 Opt. Commun. 352 96

  • [1] 韩艳晨, 李昱东, 李维. 相干布居囚禁振荡与拉曼失谐的关系.  , 2024, 73(2): 024203. doi: 10.7498/aps.73.20231408
    [2] 何乐, 褚应波, 戴能利, 李进延. 石英基L波段扩展掺铒光纤及其放大性能.  , 2022, 71(15): 154204. doi: 10.7498/aps.71.20220503
    [3] 刘强, 何军, 王军民. 室温铯原子气室窄线宽相干布居振荡光谱.  , 2021, 70(16): 163202. doi: 10.7498/aps.70.20210405
    [4] 谷开慧, 严冬, 张孟龙, 殷景志, 付长宝. 原子辅助光力系统中快慢光的量子调控.  , 2019, 68(5): 054201. doi: 10.7498/aps.68.20181424
    [5] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器.  , 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [6] 赵建朋, 罗斌, 潘炜, 闫连山, 朱宏娜, 邹喜华, 叶佳. 光纤参量放大增益谱边带快慢光特性研究.  , 2014, 63(4): 044203. doi: 10.7498/aps.63.044203
    [7] 董信征, 于振华, 田金荣, 李彦林, 窦志远, 胡梦婷, 宋晏蓉. 147 fs碳纳米管倏逝场锁模全光纤掺铒光纤激光器.  , 2014, 63(3): 034202. doi: 10.7498/aps.63.034202
    [8] 邱巍, 高波, 林鹏, 周婧婷, 李佳, 蒋秋莉, 吕品, 马英驰. 掺铒光纤中亚稳态粒子振荡和慢光时间延迟关系研究.  , 2013, 62(21): 214205. doi: 10.7498/aps.62.214205
    [9] 邱巍, 吕品, 马英驰, 徐晓娟, 刘典, 张程华. 均匀展宽增益介质中超光速饱和现象的研究.  , 2012, 61(10): 104209. doi: 10.7498/aps.61.104209
    [10] 邱巍, 马英驰, 吕品, 刘典, 徐晓娟, 张程华. 室温掺铒光纤放大器中实现参量控制无损耗光速减慢传输.  , 2012, 61(9): 094204. doi: 10.7498/aps.61.094204
    [11] 杨薇, 刘迎, 肖立峰, 杨兆祥, 潘建旋. 声光可调谐环形腔掺铒光纤激光器.  , 2010, 59(2): 1030-1034. doi: 10.7498/aps.59.1030
    [12] 郑狄, 潘炜, 闫连山, 罗斌, 邹喜华, 江宁, 马雅男. 基于一种优化的梳状布里渊增益谱实现对任意周期信号的零展宽快慢光.  , 2010, 59(2): 1040-1046. doi: 10.7498/aps.59.1040
    [13] 王静, 郑凯, 李坚, 刘利松, 陈根祥, 简水生. 基于高双折射Sagnac环的可调环形腔掺铒光纤激光器理论与实验研究.  , 2009, 58(11): 7695-7701. doi: 10.7498/aps.58.7695
    [14] 邱 巍, 掌蕴东, 叶建波, 田 赫, 王 楠, 王 号, 王金芳, 袁 萍. 损耗可控条件下掺铒光纤中光速减慢现象的研究.  , 2008, 57(4): 2242-2247. doi: 10.7498/aps.57.2242
    [15] 常德远, 郑 凯, 卫 延, 李 彬, 傅永军, 魏 淮, 简水生. 铋镓共掺的高浓度掺铒石英基光纤中铒离子团簇率的实验研究.  , 2008, 57(1): 556-560. doi: 10.7498/aps.57.556
    [16] 郑 凯, 常德远, 傅永军, 魏 淮, 延凤平, 简 伟, 简水生. 掺铒孔辅助导光光纤的特性研究与优化设计.  , 2007, 56(2): 958-967. doi: 10.7498/aps.56.958
    [17] 邱 巍, 掌蕴东, 叶建波, 田 赫, 王 楠, 王金芳, 袁 萍. 室温条件下掺铒光纤中光脉冲群速可控特性的研究.  , 2007, 56(12): 7009-7014. doi: 10.7498/aps.56.7009
    [18] 江 建, 饶云江, 周昌学, 朱 涛. 基于光放大的光纤Fizeau应变传感器频分复用系统.  , 2004, 53(7): 2221-2225. doi: 10.7498/aps.53.2221
    [19] 董新永, 赵春柳, 关柏鸥, 谭华耀, 袁树忠, 开桂云, 董孝义. 可调谐光纤环形腔激光器输出特性的理论与实验研究.  , 2002, 51(12): 2750-2755. doi: 10.7498/aps.51.2750
    [20] 王荣, 沈柯. 延时线性反馈法控制双环掺铒光纤激光器混沌.  , 2001, 50(6): 1024-1027. doi: 10.7498/aps.50.1024
计量
  • 文章访问数:  6162
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-29
  • 修回日期:  2015-08-15
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map