搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类新的Stckelberg全息超导模型

彭严 邓方安 刘国华 杨凯凡

引用本文:
Citation:

一类新的Stckelberg全息超导模型

彭严, 邓方安, 刘国华, 杨凯凡

A new Stckelberg holographic superconductor model

Peng Yan, Deng Fang-An, Liu Guo-Hua, Yang Kai-Fan
PDF
导出引用
  • 本文研究了含Stckelberg机理的黑洞全息超导模型. 通过选取标量场新的高阶修正形式, 建立了新的Stckelberg黑洞全息超导模型. 通过研究模型参数对标量场凝聚的影响, 发现了当模型参数大于临界值时, 高阶修正可以引起一阶相变. 同时本文还考查了反作用对临界值的影响.
    The AdS/CFT correspondence has provided us a useful approach to describe strongly interacting systems holographically through weakly coupled gravitational duals. One of the mostly studied gravity duals is the holographic superconductor, which is constructed by a scalar field coupled to a Maxwell field in an AdS black hole background. It is shown that when the Hawking temperature of a black hole drops below a critical value, the black hole becomes unstable and this instability in the (d+1) dimensional AdS black hole corresponds to a d-dimensional phase transition at the boundary, called holographic superconductor model. Generally speaking, the instability of the gravity systems belongs to the second-order phase transition. Lately, it was stated that the holographic superconductor with the spontaneous breaking of a global U(1) symmetry via the Stckelberg mechanism allows the first-order phase transition to occur. Some further studies are carried out by considering new forms of the Stckelberg mechanism. So it is very interesting to extend the discussion to other new forms of Stckelberg mechanism to explore the rich properties of holographic superconductors. By considering new higher correction terms of the scalar fields, we investigate a general class of holographic superconductors via Stckelberg mechanism in the background of four-dimensional AdS black hole. We obtain richer structures in the metal/superconductor phase transitions. We study the condensation of the scalar operator and find that when the model parameter is above a threshold value, this new model allows first-order phase transition to occur. We also examine the effects of the backreaction on the threshold model parameter and find that backreaction makes the first-order phase transitions easier to happen (or smaller threshold parameters above which the phase transition changes from second to first order). We may conclude that the model parameter coupled with the backreaction can determine the order of phase transitions.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11305097, 11301318)、陕西省教育厅基金(批准号: 2013JK0616)和陕西理工学院人才启动基金(批准号: SLGQD13-23)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11305097, 11301318), the education department of Shaanxi province of China (Grant No. 2013JK0616), and the Foundation of Shaaxi University of Technology of China (Grant No. SLGQD13-23).
    [1]

    Maldacena J, Adv 1998 Theor. Math. Phys. 2 231; 1999 Int. J. Theor. Phys. 38 1113

    [2]

    Gubser S S, Klebanov I R, Polyakov A M 1998 Phys. Lett. B 428 105

    [3]

    Witten E, Adv 1998 Theor. Math. Phys. 2 253

    [4]

    Hartnoll S A 2009 Class. Quant. Grav. 26 224002

    [5]

    Herzog C P 2009 J. Phys. A 42 343001

    [6]

    Horowitz G T 2010 arXiv: 1002.1722 [hep-th]

    [7]

    Gubser S S 2008 Phys. Rev. D 78 065034

    [8]

    Gubser S S, Herzog C P, Pufu S S, Tesileanu T 2009 Phys. Rev. Lett. 103 141601

    [9]

    Liu Y Q, Pan Q Y, Wang B 2011 Phys. Lett. B 702 94

    [10]

    Gauntlett J P, Sonner J, Wiseman T 2009 Phys. Rev. Lett. 103 151601

    [11]

    Jing J L, Chen S B 2010 Phys. Lett. B 686 68

    [12]

    Pan Q Y, Wang B 2010 Phys. Lett. B 693 159

    [13]

    Nishioka T, Ryu S, Takayanagi T 2010 J. High Energy Phys. 03 131

    [14]

    Hartnoll S A, Herzog C P, Horowitz G T 2008 J. High Energy Phys. 12 015

    [15]

    Gregory R, Kanno S, Soda J 2009 J. High Energy Phys. 10 010

    [16]

    Pan Q Y, Wang B, Papantonopoulos E, Oliveria J, Pavan A B 2010 Phys. Rev. D 81 106007

    [17]

    Ge X H, Wang B, Wu S F, Yang G H 2010 J. High Energy Phys. 08 108

    [18]

    Horowitz G T, Way B 2010 J. High Energy Phys. 1011 011

    [19]

    Chen S B, Pan Q Y, Jing J L 2012 Chin. Phys. B 21 040403

    [20]

    Horowitz G T, Roberts M M 2008 Phys. Rev. D 78 126008

    [21]

    Cai R G, Zhang H Q 2010 Phys. Rev. D 81 066003

    [22]

    Jing J, Wang L, Chen S, arXiv:1001.1472

    [23]

    Setare M R, Momeni D 2011 J. High Energy Phys. 05 118

    [24]

    Ge X H, Wang B, Wu S F, Yang G H 2010 J. High Energy Phys. 1008 108

    [25]

    Maeda K, Natsuume M, Okamura T 2010 Phys. Rev. D 81 026002

    [26]

    Motull M, Pomarol A, Silva P J 2009 Phys. Rev. Lett. 103 091601

    [27]

    Albash T, johnson C V, 2009 Phys. Rev. D 80 126009

    [28]

    Brihaye Y, Hartmann B 2010 Phys. Rev. D 81 126008

    [29]

    Franco S, Garcia-Garcia A M, Rodriguez-Gomez D 2010 J. High Energy Phys. 1004 092

    [30]

    Franco S, Garcia-Garcia A M, Rodriguez-Gomez D 2010 Phys. Rev. D 81 041901

    [31]

    Peng Y, Pan Q Y 2013 Commun. Theor. Phys. 59 110

    [32]

    Yan P, Pan Q Y, Wang B 2011 Phys. Lett. B 699 383

    [33]

    Yan Peng, Pan Q Y 2014 J. High Energy Phys. 06 011

    [34]

    Cai R G, He S, Li L, Li L F 2012 J. High Energy Phys. 1210 107

    [35]

    Brihaye Y, Hartmann B 2011 Phys. Rev. D 83 126008

  • [1]

    Maldacena J, Adv 1998 Theor. Math. Phys. 2 231; 1999 Int. J. Theor. Phys. 38 1113

    [2]

    Gubser S S, Klebanov I R, Polyakov A M 1998 Phys. Lett. B 428 105

    [3]

    Witten E, Adv 1998 Theor. Math. Phys. 2 253

    [4]

    Hartnoll S A 2009 Class. Quant. Grav. 26 224002

    [5]

    Herzog C P 2009 J. Phys. A 42 343001

    [6]

    Horowitz G T 2010 arXiv: 1002.1722 [hep-th]

    [7]

    Gubser S S 2008 Phys. Rev. D 78 065034

    [8]

    Gubser S S, Herzog C P, Pufu S S, Tesileanu T 2009 Phys. Rev. Lett. 103 141601

    [9]

    Liu Y Q, Pan Q Y, Wang B 2011 Phys. Lett. B 702 94

    [10]

    Gauntlett J P, Sonner J, Wiseman T 2009 Phys. Rev. Lett. 103 151601

    [11]

    Jing J L, Chen S B 2010 Phys. Lett. B 686 68

    [12]

    Pan Q Y, Wang B 2010 Phys. Lett. B 693 159

    [13]

    Nishioka T, Ryu S, Takayanagi T 2010 J. High Energy Phys. 03 131

    [14]

    Hartnoll S A, Herzog C P, Horowitz G T 2008 J. High Energy Phys. 12 015

    [15]

    Gregory R, Kanno S, Soda J 2009 J. High Energy Phys. 10 010

    [16]

    Pan Q Y, Wang B, Papantonopoulos E, Oliveria J, Pavan A B 2010 Phys. Rev. D 81 106007

    [17]

    Ge X H, Wang B, Wu S F, Yang G H 2010 J. High Energy Phys. 08 108

    [18]

    Horowitz G T, Way B 2010 J. High Energy Phys. 1011 011

    [19]

    Chen S B, Pan Q Y, Jing J L 2012 Chin. Phys. B 21 040403

    [20]

    Horowitz G T, Roberts M M 2008 Phys. Rev. D 78 126008

    [21]

    Cai R G, Zhang H Q 2010 Phys. Rev. D 81 066003

    [22]

    Jing J, Wang L, Chen S, arXiv:1001.1472

    [23]

    Setare M R, Momeni D 2011 J. High Energy Phys. 05 118

    [24]

    Ge X H, Wang B, Wu S F, Yang G H 2010 J. High Energy Phys. 1008 108

    [25]

    Maeda K, Natsuume M, Okamura T 2010 Phys. Rev. D 81 026002

    [26]

    Motull M, Pomarol A, Silva P J 2009 Phys. Rev. Lett. 103 091601

    [27]

    Albash T, johnson C V, 2009 Phys. Rev. D 80 126009

    [28]

    Brihaye Y, Hartmann B 2010 Phys. Rev. D 81 126008

    [29]

    Franco S, Garcia-Garcia A M, Rodriguez-Gomez D 2010 J. High Energy Phys. 1004 092

    [30]

    Franco S, Garcia-Garcia A M, Rodriguez-Gomez D 2010 Phys. Rev. D 81 041901

    [31]

    Peng Y, Pan Q Y 2013 Commun. Theor. Phys. 59 110

    [32]

    Yan P, Pan Q Y, Wang B 2011 Phys. Lett. B 699 383

    [33]

    Yan Peng, Pan Q Y 2014 J. High Energy Phys. 06 011

    [34]

    Cai R G, He S, Li L, Li L F 2012 J. High Energy Phys. 1210 107

    [35]

    Brihaye Y, Hartmann B 2011 Phys. Rev. D 83 126008

  • [1] 杨卓群, 吴亚波, 鲁军旺, 张成园, 张雪. Lifshitz时空s波超导模型的关联长度和穿透深度.  , 2016, 65(4): 040401. doi: 10.7498/aps.65.040401
    [2] 潘伟珍, 杨学军, 骆金彩. 新乌龟坐标变换下的动态Kinnersley黑洞的Hawking辐射.  , 2011, 60(10): 109701. doi: 10.7498/aps.60.109701
    [3] 邹伯夏, 颜骏, 李季根. 黑洞背景下费米物质能量密度涨落的计算.  , 2010, 59(11): 7602-7606. doi: 10.7498/aps.59.7602
    [4] 杨 波. 一般加速带电带磁的动态黑洞中标量场的熵.  , 2008, 57(4): 2614-2620. doi: 10.7498/aps.57.2614
    [5] 杨 波. 直线加速Kinnersley黑洞中Dirac粒子的热辐射.  , 2008, 57(2): 1278-1284. doi: 10.7498/aps.57.1278
    [6] 韩亦文, 洪 云, 杨树政. 广义不确定关系与整体单极黑洞Dirac场的熵.  , 2007, 56(1): 10-14. doi: 10.7498/aps.56.10
    [7] 李传安, 苏九清. Kerr-Newman黑洞的谐振子模型及量子面积谱.  , 2006, 55(9): 4433-4436. doi: 10.7498/aps.55.4433
    [8] 曹江陵. 任意加速带电动态黑洞中Dirac粒子的Hawking辐射.  , 2006, 55(6): 2682-2686. doi: 10.7498/aps.55.2682
    [9] 郑元强. 动态广义球对称含荷黑洞Dirac场的熵.  , 2006, 55(7): 3272-3276. doi: 10.7498/aps.55.3272
    [10] 刘成周, 赵 峥. Gibbons-Maeda dilaton 黑洞的纠缠熵.  , 2006, 55(4): 1607-1615. doi: 10.7498/aps.55.1607
    [11] 韩亦文. 用量子隧穿法研究带质量四极矩静态黑洞的Hawking辐射.  , 2005, 54(11): 5018-5021. doi: 10.7498/aps.54.5018
    [12] 牛振风, 刘文彪. 新Tortoise坐标变换与任意加速带电动态黑洞熵.  , 2005, 54(1): 475-480. doi: 10.7498/aps.54.475
    [13] 蒋继建, 李传安. Kerr黑洞的量子面积谱及微黑洞的最小质量.  , 2005, 54(8): 3958-3961. doi: 10.7498/aps.54.3958
    [14] 孙学锋, 景 玲, 刘文彪. 黑洞熵无截断薄层模型的改进与推广.  , 2004, 53(11): 4002-4006. doi: 10.7498/aps.53.4002
    [15] 孟庆苗. 静态球对称黑洞Dirac场的Stefan-Boltzmann定律.  , 2003, 52(8): 2102-2104. doi: 10.7498/aps.52.2102
    [16] 宋太平, 侯晨霞, 黄金书. 一般球对称带电蒸发黑洞的熵.  , 2002, 51(8): 1901-1906. doi: 10.7498/aps.51.1901
    [17] 李传安, 孟庆苗, 苏九清. 静态球对称黑洞Dirac场的统计熵.  , 2002, 51(8): 1897-1900. doi: 10.7498/aps.51.1897
    [18] 宋太平, 侯晨霞, 史旺林. Vaidya-Bonner黑洞的熵.  , 2002, 51(6): 1398-1402. doi: 10.7498/aps.51.1398
    [19] 李传安. 黑洞的普朗克绝对熵公式.  , 2001, 50(5): 986-989. doi: 10.7498/aps.50.986
    [20] 李传安. 黑洞的视界面公式.  , 2000, 49(8): 1648-1651. doi: 10.7498/aps.49.1648
计量
  • 文章访问数:  5594
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-18
  • 修回日期:  2015-04-02
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map