搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋极化度对GaAs量子阱中吸收饱和效应与载流子复合动力学的影响研究

方少寅 陆海铭 赖天树

引用本文:
Citation:

自旋极化度对GaAs量子阱中吸收饱和效应与载流子复合动力学的影响研究

方少寅, 陆海铭, 赖天树

Effects of spin polarization on absorption saturation and recombination dynamics of carriers in (001) GaAs quantum wells

Fang Shao-Yin, Lu Hai-Ming, Lai Tian-Shu
PDF
导出引用
  • 本文研究了(001) GaAs量子阱薄膜中重空穴激子近共振抽运-探测的载流子自旋弛豫动力学, 发现载流子的自旋极化对传统的线偏振光吸收饱和效应和载流子复合动力学都有影响. 进一步的抽运流依赖的自旋弛豫和复合动力学研究表明, 自旋极化对线偏振光的吸收饱和效应的影响随抽运流降低而变弱. 在低激发流时, 自旋极化对线偏振吸收饱和效应的影响才可忽略. 然而, 又显现出自旋极化对复合动力学的影响. 分析表明复合动力学的自旋极化依赖性起源于重空穴激子形成浓度的自旋极化依赖性. 复合动力学的自旋极化依赖性表明自旋弛豫时间计算中所涉及的复合时间应该使用自旋极化载流子的复合时间. 基于二维质量作用定律的激子浓度计算表明, 库仑屏蔽效应对激子形成的影响在较低激发载流子浓度下可以忽略.
    In this paper, the ultrafast dynamics of spin relaxation and recombination of photoexcited carriers has been studied in (001) GaAs quantum wells using a time-resolved pump-probe absorption spectroscopy under a nearly resonant excitation of heavy-hole excitons. It is found that the spin polarization of carriers influences both absorption saturation of linear polarized light and recombination dynamics of carriers. Pump fluence dependence of the ultrafast dynamics of spin relaxation and recombination of carriers is further studied, which shows that the effect of spin polarization on linearly polarized absorption saturation is reduced with lowering pump fluence. Spin-polarization-dependent absorption saturation effect can be ignored only as the pump fluence is weak. However, spin-polarization dependence of recombination dynamics is presented in turn at low pump fluence. Our analysis shows that such dependence originates from the spin-polarization dependence of the density of excitons formed in the excited carriers because recombination time constants of excitons and free carriers are very different so that the ratio of exciton density to free carrier density can influence the recombination dynamics. The spin-polarization dependence of ultrafast recombination dynamics of photoexcited carriers implies that the recombination time constant in the calculation of spin relaxation time from spin relaxation dynamics should be the recombination time of spin-polarized carriers, rather than the recombination lifetime of non-spin-polarized carriers as done currently. Exciton density is estimated based on 2D mass action law, which agrees very well with our experimental results. The good agreement between theoretical calculation and experimental results reveals that the effect of Coulomb screening on the formation of excitons may be ignored for a lower excited carrier density.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB922403), 国家自然科学基?(批准号: 11274399, 61475195)和广东省自然科学基金(批准号: 2104A030311029)资助的课题.
    • Funds: Project supported by the State Key program for Basic Research of China (Grant No. 2013CB922403), the National Natural Science Foundation of China (Grant Nos. 11274399, 61475195), and the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030311029).
    [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molna S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [2]

    Lai T S, Teng L H, Jiao Z X, Xu H H, Lei L, Wen J H, Lin W Z 2007 Appl. Phys. Lett. 91 062110

    [3]

    Teng L H, Yu H L, Zuo F Y, Wen J H, Lin W Z, Lai T S 2008 Acta Phys. Sin. 57 6598 (in Chinese) [滕利华, 余华梁, 左方圆, 文锦辉, 林位株, 赖天树 2008 57 6598]

    [4]

    Zhao C B, Yan T F, Ni H Q, Niu Z C, Zhang X H 2013 Appl. Phys. Lett. 102 012406

    [5]

    Yu H L, Zhang X M, Wang P F, Ni H Q, Niu Z C, Lai T S 2009 Appl. Phys. Lett. 94 202109

    [6]

    Weber C P, Gedik N, Moore J E, Orenstein J, Stephens J, Awschalom D D 2005 Nature 437 1330

    [7]

    Wu M W, Jiang J H, Weng M Q 2010 Physics Reports 493 61

    [8]

    Chen K, Wang W F, Wu J D, Schuh D, Wegscheider W, Korn T, Lai T S 2012 Optics Express 20 8192

    [9]

    Ma H, Jin Z M, Ma G H, Liu W M, Tang S H 2009 Appl. Phys. Lett. 94 241112

    [10]

    Luo H H, Qian X, Ruan X Z, Ji Y, Umansky V 2009 Phys. Rev. B 80 193301

    [11]

    Chai Z, Hu M J, Wang R Q, Hu L B 2014 Chin. Phys. B 23 027201

    [12]

    Gu X F, Qian X, Ji Y, Chen L, Zhao J H 2011 Chin. Phys. B 20 087503

    [13]

    Weng M Q, Wu M W 2003 Phys. Rev. B 68 075312

    [14]

    Stich D, Zhou J, Korn T, Schulz R, Schuh D, Wegscheider W, Wu M W, Schller C 2007 Phys. Rev. B 76 205301

    [15]

    Stich D, Zhou J, Korn T, Schulz R, Schuh D, Wegscheider W, Wu M W, Schller C 2007 Phys. Rev. Lett. 98 176401

    [16]

    Teng L H, Yu H L, Huang Z L, Wen J H, Lin W Z, Lai T S 2008 Acta Phys. Sin. 57 6593 (in Chinese) [滕利华, 余华梁, 黄志凌, 文锦辉, 林位株, 赖天树 2008 57 6593]

    [17]

    Teng L H, Wang X, Ge W, Lai T S 2011 Semicond. Sci. Technol. 26 095012

    [18]

    Kumar R, Prabhu S S, Vengurlekar A S 1997 Phys. Scripta 56 308

    [19]

    Chemla D S, Miller D A B, Smith P W, Gossard A C, Wiegmann W 1984 IEEE J. Quan. Elec. 20 265

    [20]

    Christen J, Bimberg D 1986 Surface Sci. 174 261

    [21]

    Gulia M, Rossi F, Molinari E, Selbmann P E, Lugli P 1997 Phys. Rev. B 55 R16049

  • [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molna S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [2]

    Lai T S, Teng L H, Jiao Z X, Xu H H, Lei L, Wen J H, Lin W Z 2007 Appl. Phys. Lett. 91 062110

    [3]

    Teng L H, Yu H L, Zuo F Y, Wen J H, Lin W Z, Lai T S 2008 Acta Phys. Sin. 57 6598 (in Chinese) [滕利华, 余华梁, 左方圆, 文锦辉, 林位株, 赖天树 2008 57 6598]

    [4]

    Zhao C B, Yan T F, Ni H Q, Niu Z C, Zhang X H 2013 Appl. Phys. Lett. 102 012406

    [5]

    Yu H L, Zhang X M, Wang P F, Ni H Q, Niu Z C, Lai T S 2009 Appl. Phys. Lett. 94 202109

    [6]

    Weber C P, Gedik N, Moore J E, Orenstein J, Stephens J, Awschalom D D 2005 Nature 437 1330

    [7]

    Wu M W, Jiang J H, Weng M Q 2010 Physics Reports 493 61

    [8]

    Chen K, Wang W F, Wu J D, Schuh D, Wegscheider W, Korn T, Lai T S 2012 Optics Express 20 8192

    [9]

    Ma H, Jin Z M, Ma G H, Liu W M, Tang S H 2009 Appl. Phys. Lett. 94 241112

    [10]

    Luo H H, Qian X, Ruan X Z, Ji Y, Umansky V 2009 Phys. Rev. B 80 193301

    [11]

    Chai Z, Hu M J, Wang R Q, Hu L B 2014 Chin. Phys. B 23 027201

    [12]

    Gu X F, Qian X, Ji Y, Chen L, Zhao J H 2011 Chin. Phys. B 20 087503

    [13]

    Weng M Q, Wu M W 2003 Phys. Rev. B 68 075312

    [14]

    Stich D, Zhou J, Korn T, Schulz R, Schuh D, Wegscheider W, Wu M W, Schller C 2007 Phys. Rev. B 76 205301

    [15]

    Stich D, Zhou J, Korn T, Schulz R, Schuh D, Wegscheider W, Wu M W, Schller C 2007 Phys. Rev. Lett. 98 176401

    [16]

    Teng L H, Yu H L, Huang Z L, Wen J H, Lin W Z, Lai T S 2008 Acta Phys. Sin. 57 6593 (in Chinese) [滕利华, 余华梁, 黄志凌, 文锦辉, 林位株, 赖天树 2008 57 6593]

    [17]

    Teng L H, Wang X, Ge W, Lai T S 2011 Semicond. Sci. Technol. 26 095012

    [18]

    Kumar R, Prabhu S S, Vengurlekar A S 1997 Phys. Scripta 56 308

    [19]

    Chemla D S, Miller D A B, Smith P W, Gossard A C, Wiegmann W 1984 IEEE J. Quan. Elec. 20 265

    [20]

    Christen J, Bimberg D 1986 Surface Sci. 174 261

    [21]

    Gulia M, Rossi F, Molinari E, Selbmann P E, Lugli P 1997 Phys. Rev. B 55 R16049

  • [1] 王谦, 刘卫国, 巩蕾, 王利国, 李亚清. 双波长自由载流子吸收技术测量半导体载流子体寿命和表面复合速率.  , 2018, 67(21): 217201. doi: 10.7498/aps.67.20181509
    [2] 李天信, 翁钱春, 鹿建, 夏辉, 安正华, 陈张海, 陈平平, 陆卫. 量子点操控的光子探测和圆偏振光子发射.  , 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [3] 滕利华, 王霞. 载流子复合对时间分辨法拉第旋转光谱的影响.  , 2011, 60(5): 057202. doi: 10.7498/aps.60.057202
    [4] 宋迎新, 郑卫民, 刘静, 初宁宁, 李素梅. 量子限制效应对δ掺杂GaAs/AlAs多量子阱中铍受主态寿命的影响.  , 2009, 58(9): 6471-6476. doi: 10.7498/aps.58.6471
    [5] 余华梁, 张秀敏, 滕利华, 文锦辉, 林位株, 赖天树. 本征GaAs量子阱中电子自旋扩散输运的时-空分辨吸收光谱研究.  , 2009, 58(5): 3543-3547. doi: 10.7498/aps.58.3543
    [6] 滕利华, 余华梁, 左方圆, 文锦辉, 林位株, 赖天树. 本征GaAs中电子自旋极化的能量演化研究.  , 2008, 57(10): 6598-6603. doi: 10.7498/aps.57.6598
    [7] 滕利华, 余华梁, 黄志凌, 文锦辉, 林位株, 赖天树. 本征GaAs中电子自旋极化对电子复合动力学的影响研究.  , 2008, 57(10): 6593-6597. doi: 10.7498/aps.57.6593
    [8] 杨 光, P. V. Santos. 声表面波对GaAs(110)量子阱发光特性的调制.  , 2006, 55(8): 4327-4331. doi: 10.7498/aps.55.4327
    [9] 王 茺, 陈平平, 周旭昌, 夏长生, 王少伟, 陈效双, 陆 卫. 压电调制反射光谱研究GaAs/Al0.29Ga0.71As单量子阱.  , 2005, 54(7): 3337-3341. doi: 10.7498/aps.54.3337
    [10] 徐晓华, 牛智川, 倪海桥, 徐应强, 张 纬, 贺正宏, 韩 勤, 吴荣汉, 江德生. 分子束外延生长的(GaAs1-xSbx/InyGa1-yAs)/GaAs量子阱光致发光谱研究.  , 2005, 54(6): 2950-2954. doi: 10.7498/aps.54.2950
    [11] 赖天树, 刘鲁宁, 雷 亮, 寿 倩, 李熙莹, 王嘉辉, 林位株. 电子自旋偏振度及其弛豫过程的飞秒激光吸收光谱研究.  , 2005, 54(2): 967-971. doi: 10.7498/aps.54.967
    [12] 袁先漳, 缪中林. Al/GaAs表面量子阱界面层的原位光调制反射光谱研究.  , 2004, 53(10): 3521-3524. doi: 10.7498/aps.53.3521
    [13] 袁先漳, 陆 卫, 李 宁, 陈效双, 沈学础, 资 剑. 超长波GaAs/AlGaAs量子阱红外探测器光电流谱特性研究.  , 2003, 52(2): 503-507. doi: 10.7498/aps.52.503
    [14] 缪中林, 陈平平, 陆卫, 徐文兰, 李志锋, 蔡玮颖. GaAs/Al1-xAs表面单量子阱原位光调制反射光谱研究.  , 2001, 50(1): 111-115. doi: 10.7498/aps.50.111
    [15] 李娜, 袁先漳, 李宁, 陆卫, 李志峰, 窦红飞, 沈学础, 金莉, 李宏伟, 周均铭, 黄绮. GaAs/AlxGa1-xAs量子阱能级结构设计与光谱分析.  , 2000, 49(4): 797-801. doi: 10.7498/aps.49.797
    [16] 朱文章, 沈顗华. GaAs/AlGaAs多量子阱光生电压谱研究.  , 1996, 45(2): 258-264. doi: 10.7498/aps.45.258
    [17] 甘建华, 陈徐宗, 李义民, 吉望西, 华景山, 姚继良, 杨东海, 王义遒. 铯饱和吸收光谱随抽运光强度的变化.  , 1996, 45(10): 1622-1628. doi: 10.7498/aps.45.1622
    [18] 程文芹, 梅笑冰, 周均铭, 刘玉龙, 朱恪. 掺铍GaAs量子阱的光致荧光.  , 1993, 42(5): 864-866. doi: 10.7498/aps.42.864
    [19] 池坚刚, 赵文琴, 李爱珍. MBE GaAs1-xSbx/GaAs应变层量子阱的光调制反射光谱.  , 1989, 38(10): 1710-1716. doi: 10.7498/aps.38.1710
    [20] 贾惟义, 鲁志东, 黄绮, 周均铭, 李永康, 王彦云. GaAs/GaAlAs多量子阱的光致荧光诊断.  , 1988, 37(6): 906-915. doi: 10.7498/aps.37.906
计量
  • 文章访问数:  5726
  • PDF下载量:  6199
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-07
  • 修回日期:  2015-04-02
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map