-
本文提出在铜铁稀磁合金中高浓度铁磁杂质之间的相互作用对低温热电势的影响巨大, 基于耦合杂质理论, 得出了高浓度铜铁稀磁合金的热电势在4-100 K的温度范围内随温度变化的理论曲线. 理论曲线与铁杂质浓度含量为0.1%(at) Fe, 0.13%(at) Fe和0.15%(at) Fe原子百分比的铜铁合金热电势实验值符合, 为推动低温铜铁稀磁热电偶的应用提供了理论分析基础.
-
关键词:
- 稀磁铜铁合金热电偶 /
- 磁性杂质 /
- 康多效应(Kondo effect) /
- 低温分度特性
In the paper the coupling impurities theory is used, and both s-d interaction effect and phonon effect in dilute magnetic alloys are discussed . The Green’s function is used to analyse the Hamiltonian of the system. In copper-iron dilute magnetic alloy the magnetic impurities interaction has a huge impact on thermoelectric power in the condition of high concentration of iron. Theoretic value of thermoelectric power of dilute magnetic copper-iron alloy with high concentration of iron changing with temperature is given. We have chosen three typical copper-iron dilute magnetic alloys and calculated the thermoelectric power under the effect of impurities and the effect of impurities interaction. Their atomic percentage concentrations are 0.1%, 0.13% and 0.15% respectively. Theoretical value of the thermoelectric power under the effect of impurities interaction in copper-iron alloy complies with experimental value. This paper provides the basic theoretical analysis for promoting the application of low-temperature copper-iron dilute magnetic thermocouple.-
Keywords:
- dilute magnetic copper-iron thermocouple /
- magnetic impurity /
- Kondo effect /
- calibration at low temperature
[1] Jun K 1965 Progress of Theoretical Physics 34 372
[2] Wang H L, Gao H C 1990 Physica B 165 41
[3] Wang H L, Liu N, Chen L Q, Gao H C, Wu H L 1985 Acta Physica Temperature Humilis Sinica 7 72 (in Chinese) [王惠龄, 刘宁, 陈立青, 高鸿春, 武荷莲 1985 低温物理 7 72]
[4] Ma X C, CHEN Z Y 1991 Chinese Journal of Low Temperature Physics 13 363 (in Chinese) [马信昌, 陈宗蕴 1991 低温 13 363]
[5] Rubin L G 1997 Cryogenics 37 341
[6] Wang H L, Rao R S, Wang J Journal of Physics: Conference Series Buenos Aires, Argentina, August, 2014 p1742
[7] Wang H L, Huang L B, Liu M Y 2014 Chinese Society of Engineering Thermophysics Academic Conference Xi’an, China, November, 2014 p4
[8] Anderson P W 1961 Physical Review 124 41
[9] Li Z Z, Hu X X, Wang J C 1985 Acta Phys. Sin. 34 145 (in Chinese) [李正中, 胡筱欣, 王金才 1985 34 145]
[10] Wang H L, Zhu X B, Jiang Z H, Wang H 1996 Czechoslovak Journal of Physics 46 2533
[11] Chen L 2001 Chinses Journal of Low Temperature Physics 23 48 (in Chinese) [陈丽 2001 低温 23 48]
[12] Zhang S W, Ouyang M, Wang Z H 1979 Journal of Instrument Materials 3 25 (in Chinese) [张书, 文欧阳明, 王振华 1979 仪表材料 3 25]
[13] Gao H C 1982 Journal of Instrument Materials 13 36 (in Chinese) [高鸿春 1982 仪表材料 13 36]
-
[1] Jun K 1965 Progress of Theoretical Physics 34 372
[2] Wang H L, Gao H C 1990 Physica B 165 41
[3] Wang H L, Liu N, Chen L Q, Gao H C, Wu H L 1985 Acta Physica Temperature Humilis Sinica 7 72 (in Chinese) [王惠龄, 刘宁, 陈立青, 高鸿春, 武荷莲 1985 低温物理 7 72]
[4] Ma X C, CHEN Z Y 1991 Chinese Journal of Low Temperature Physics 13 363 (in Chinese) [马信昌, 陈宗蕴 1991 低温 13 363]
[5] Rubin L G 1997 Cryogenics 37 341
[6] Wang H L, Rao R S, Wang J Journal of Physics: Conference Series Buenos Aires, Argentina, August, 2014 p1742
[7] Wang H L, Huang L B, Liu M Y 2014 Chinese Society of Engineering Thermophysics Academic Conference Xi’an, China, November, 2014 p4
[8] Anderson P W 1961 Physical Review 124 41
[9] Li Z Z, Hu X X, Wang J C 1985 Acta Phys. Sin. 34 145 (in Chinese) [李正中, 胡筱欣, 王金才 1985 34 145]
[10] Wang H L, Zhu X B, Jiang Z H, Wang H 1996 Czechoslovak Journal of Physics 46 2533
[11] Chen L 2001 Chinses Journal of Low Temperature Physics 23 48 (in Chinese) [陈丽 2001 低温 23 48]
[12] Zhang S W, Ouyang M, Wang Z H 1979 Journal of Instrument Materials 3 25 (in Chinese) [张书, 文欧阳明, 王振华 1979 仪表材料 3 25]
[13] Gao H C 1982 Journal of Instrument Materials 13 36 (in Chinese) [高鸿春 1982 仪表材料 13 36]
计量
- 文章访问数: 6165
- PDF下载量: 157
- 被引次数: 0