-
针对量子中继器短时间内难以应用于长距离量子密钥分配系统的问题, 提出了基于量子存储的长距离测量设备无关量子密钥分配协议, 分析了其密钥生成率与存储效率、信道传输效率和安全传输距离等参数间的关系, 研究了该协议中量子存储单元的退相干效应对最终密钥生成率的影响, 比较了经典测量设备无关量子密钥分配协议和基于量子存储的测量设备无关量子密钥分配协议的密钥生成率与安全传输距离的关系. 仿真结果表明, 添加量子存储单元后, 协议的安全传输距离由无量子存储的216 km增加至500 km, 且量子存储退相干效应带来的误码对最终的密钥生成率影响较小. 实验中可以采取调节信号光强度的方式提高测量设备无关量子密钥分配系统的密钥生成率, 为实用量子密钥分配实验提供了重要的理论参数.
-
关键词:
- 量子存储 /
- 测量设备无关量子密钥分配 /
- 诱骗态
We propose a long distance measurement-device-independent (MDI) quantum-key-distribution (QKD) with quantum memory, and analyze the relationship between the key generation rate and the storage efficiency of quantum memory. Our protocol is considered and compared with MDI-QKD without quantum memory. We present general formulas for our protocol with three-intensity decoy states. The simulation results show that the maximum secure distance supported by MDI-QKD with quantum memory is about 500 km, while the maximum secure distance of MDI-QKD without quantum memory is only 216 km. With certain limits, prolonging the time of maintaining the necessary quantum fidelity can increase security key transmission distance. Furthermore, the protocol is robust against device imperfection such as quantum memory decoherence effects, which can be easily applied to practical QKD system.[1] Bennet C H, Brassard G 1984 Proc. IEEE International Conference Computers, Systems, and Signal Processing Bangalore, India, December 9-12,1984 pp175-179
[2] Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441
[3] Mayers D 2001 J. ACM 48 351
[4] Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quantum Infor. Comput. 4 325
[5] Dong C, Zhao S H, Dong Y, Zhao W H, Zhao J 2014 Acta Phys. Sin. 63 170303 (in Chinese) [ 东晨, 赵尚弘, 董毅, 赵卫虎, 赵静 2014 63 170303]
[6] Sheng Y B, Zhou L, Cheng W W, Gong L Y, Wang L, Zhan S M 2013 Chin. Phys. B 22 030314
[7] Wang J D, Qin X J, Wei Z J, Liu X B, Liao C J, Liu S H 2010 Acta Phys. Sin. 59 281 (in Chinese) [王金东, 秦晓娟, 魏正军, 刘小宝, 廖常俊, 刘颂豪 2010 59 281]
[8] Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L, Guo G
[9] Jiao R Z, Tang S J, Zhang C 2012 Acta Phys. Sin. 61 050302 (in Chinese) [焦荣珍, 唐少杰, 张弨 2012 61 050302]
[10] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lutkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301
[11] Sangouard N, Simon C, Zhao B, Chen Y A, de Riedmateen H, Pan J W, Gisin N 2008 Phys. Rev. A 77 0602301
[12] Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932
[13] Lloyd S, Shahriar M S, Shapiro J H, Hemmer P R 2001 Phys. Rev. Lett. 87 167903
[14] Razavi M, Shapiro J H 2006 Phys. Rev. A 73 042303
[15] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[16] Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503
[17] Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Modern Phys. 83 33
[18] Rubenok A, Slater J A, Chan P, Lucio-Martinez I, Tittle W 2012 arxiv:1204 0738
[19] Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J 2012 arXiv:1209 6178
[20] Piparo N L, Razavi M 2012 The Sixth International Conference on Quantum, Nano and Micro Technologies Rome, Italy
[21] Panayi C, Razavi M, Ma X F, Norbert L 2013 arXiv:1209 6178
[22] Abruzzo S, Permann H K, Brub D 2013 arXiv:1306 3095v1
[23] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[24] Ma X F, Fung C H F, Razavi M 2012 Phys. Rev. A 86 052305
[25] Ma X F, Razavi M 2012 Phys. Rev. A 86 062319
[26] Abruzzo S, Kampermann H, Brub D 2013 arXiv:1306 3905
[27] Panayi C, Razavi M, Ma X F, Lutkenhaus N 2013 arXiv:1309 3406
-
[1] Bennet C H, Brassard G 1984 Proc. IEEE International Conference Computers, Systems, and Signal Processing Bangalore, India, December 9-12,1984 pp175-179
[2] Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441
[3] Mayers D 2001 J. ACM 48 351
[4] Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quantum Infor. Comput. 4 325
[5] Dong C, Zhao S H, Dong Y, Zhao W H, Zhao J 2014 Acta Phys. Sin. 63 170303 (in Chinese) [ 东晨, 赵尚弘, 董毅, 赵卫虎, 赵静 2014 63 170303]
[6] Sheng Y B, Zhou L, Cheng W W, Gong L Y, Wang L, Zhan S M 2013 Chin. Phys. B 22 030314
[7] Wang J D, Qin X J, Wei Z J, Liu X B, Liao C J, Liu S H 2010 Acta Phys. Sin. 59 281 (in Chinese) [王金东, 秦晓娟, 魏正军, 刘小宝, 廖常俊, 刘颂豪 2010 59 281]
[8] Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L, Guo G
[9] Jiao R Z, Tang S J, Zhang C 2012 Acta Phys. Sin. 61 050302 (in Chinese) [焦荣珍, 唐少杰, 张弨 2012 61 050302]
[10] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lutkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301
[11] Sangouard N, Simon C, Zhao B, Chen Y A, de Riedmateen H, Pan J W, Gisin N 2008 Phys. Rev. A 77 0602301
[12] Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932
[13] Lloyd S, Shahriar M S, Shapiro J H, Hemmer P R 2001 Phys. Rev. Lett. 87 167903
[14] Razavi M, Shapiro J H 2006 Phys. Rev. A 73 042303
[15] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[16] Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503
[17] Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Modern Phys. 83 33
[18] Rubenok A, Slater J A, Chan P, Lucio-Martinez I, Tittle W 2012 arxiv:1204 0738
[19] Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J 2012 arXiv:1209 6178
[20] Piparo N L, Razavi M 2012 The Sixth International Conference on Quantum, Nano and Micro Technologies Rome, Italy
[21] Panayi C, Razavi M, Ma X F, Norbert L 2013 arXiv:1209 6178
[22] Abruzzo S, Permann H K, Brub D 2013 arXiv:1306 3095v1
[23] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[24] Ma X F, Fung C H F, Razavi M 2012 Phys. Rev. A 86 052305
[25] Ma X F, Razavi M 2012 Phys. Rev. A 86 062319
[26] Abruzzo S, Kampermann H, Brub D 2013 arXiv:1306 3905
[27] Panayi C, Razavi M, Ma X F, Lutkenhaus N 2013 arXiv:1309 3406
计量
- 文章访问数: 6214
- PDF下载量: 381
- 被引次数: 0