搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对运动完整系统Appell方程Mei对称性的共形不变性与守恒量

张芳 张耀宇 薛喜昌 贾利群

引用本文:
Citation:

相对运动完整系统Appell方程Mei对称性的共形不变性与守恒量

张芳, 张耀宇, 薛喜昌, 贾利群

Conformal invariance and conserved quantity of Mei symmetry for Appell equation in a holonomic system in relative motion

Zhang Fang, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun
PDF
导出引用
  • 研究相对运动完整系统Appell方程Mei对称性的共形不变性与守恒量. 引入无限小单参数变换群及其生成元向量, 给出相对运动完整系统Appell方程的Mei对称性和共形不变性的定义, 导出系统Mei对称性的共形不变性确定方程, 重点讨论系统共形不变性和Mei对称性的关系, 然后借助规范函数满足的结构方程导出系统Mei对称性导致的Mei守恒量表达式, 最后举例说明结果的应用.
    For a holonomic system in relative motion, the conformal invariance and the conserved quantity of Mei symmetry with Appell equations are investigated. First, by using the infinitesimal one-parameter transformation group and the infinitesimal generator vector, the definitions of Mei symmetry and the conformal invariance with Appell equations in a holonomic system in relative motion are given, and the determining equations of the conformal invariance of Mei symmetry for the system are derived. Relationship between the conformal invariance and Mei symmetry for the system is mainly studied. Then, by means of the structural equation which the gauge function satisfies, the expression of Mei conserved quantity deduced from Mei symmetry for the system is obtained. Finally, an example is given to illustrate the application of the result.
    • 基金项目: 国家自然科学基金(批准号:11142014)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11142014).
    [1]

    Jia L Q, Wang X X, Zhang M L, Han Y L 2012 Nonlinear Dyn. 69 1807

    [2]

    Han Y L, Wang X X, Zhang, M L, Jia L Q 2013 Nonlinear Dyn. 71 401

    [3]

    Jia L Q, Sun X T, Zhang M L, Zhang Y Y, Han Y L 2014 Acta Phys. Sin. 63 010201 (in Chinese) [贾利群, 孙现亭, 张美玲, 张耀宇, 韩月林 2014 63 010201]

    [4]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Acta Phys. Sin. 62 110201 (in Chinese) [韩月林, 王肖肖, 张美玲, 贾利群 2013 62 110201]

    [5]

    Chen X W, Li Y M, Zhao Y H 2005 Phys. Lett. A 337 274

    [6]

    Luo S K, Li L 2013 Nonlinear Dyn. 73 639

    [7]

    Luo S K, Li L 2013 Nonlinear Dyn. 73 339

    [8]

    Luo S K, Li Z J, Peng W, Li L 2013 Acta Mech. 224 71

    [9]

    Luo S K, Li Z J, Li L 2012 Acta Mech. 223 2621

    [10]

    Jiang W A, Luo S K 2012 Nonlinear Dyn. 67 475

    [11]

    Wang X X, Han YL, Zhang M L, Jia L Q 2013 Chin. Phys. B 22 020201

    [12]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Nonlinear Dyn. 73 357

    [13]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2014 Journal of Mechanics. 30 21

    [14]

    Wang P, Fang J H, Wang X M 2009 Chin. Phys. B 18 1312

    [15]

    Fang J H 2010 Chin. Phys. B 19 040301

    [16]

    Cui J C, Han Y L, Jia L Q 2012 Chin. Phys. B 21 080201

    [17]

    Jia L Q, Xie Y L, Zhang Y Y, Yang X F 2010 Chin. Phys. B 19 110301

    [18]

    Jia L Q, Zhang M L, Wang X X, Han Y L 2012 Chin. Phys. B 21 070204

    [19]

    Wang X X, Sun X T, Zhang M L, Xie Y L, Jia L Q 2011 Chin. Phys. B 20 124501

    [20]

    Fang J H, Zhang B, Zhang W W, Xu R L 2012 Chin. Phys. B 21 050202

    [21]

    Zhang B, Fang J H, Zhang W W 2012 Chin. Phys. B 21 070208

    [22]

    Xia L L, Cai J L 2010 Chin. Phys. B 19 040302

    [23]

    Cai J L, Shi S S, Fang H J, Xu J 2012 Meccanica. 47 63

    [24]

    Huang W L, Cai J L 2012 Acta Mech. 223 433

    [25]

    Cai J L 2012 Nonlinear Dyn. 69 487

    [26]

    Han Y L, Sun X T, Zhang Y Y, Jia L Q 2013 Acta Phys. Sin. 62 160201 (in Chinese) [韩月林, 孙现亭, 张耀宇, 贾利群 2013 62 160201]

    [27]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems( Beijing: Science Press) (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用(北京: 科学学出版社)]

    [28]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量(北京: 北京理工大学出版社)]

    [29]

    Zhang M L, Wang X X, Han Y L, Jia L Q 2012 Journal of Yunnan University (Natural Sciences Edition) 34 664 (in Chinese) [张美玲, 王肖肖, 韩月林, 贾利群 2012 云南大学学报 34 664]

    [30]

    Chen X W, Zhao Y H, Li Y M 2009 Chin. Phys. B 18 3139

    [31]

    Zhang M L, Wang X X, Han Y L, Jia L Q 2012 Chin. Phys. B 21 100203

    [32]

    Xie Y L, Jia L Q, Luo S K 2011 Chin. Phys. B 20 010203

  • [1]

    Jia L Q, Wang X X, Zhang M L, Han Y L 2012 Nonlinear Dyn. 69 1807

    [2]

    Han Y L, Wang X X, Zhang, M L, Jia L Q 2013 Nonlinear Dyn. 71 401

    [3]

    Jia L Q, Sun X T, Zhang M L, Zhang Y Y, Han Y L 2014 Acta Phys. Sin. 63 010201 (in Chinese) [贾利群, 孙现亭, 张美玲, 张耀宇, 韩月林 2014 63 010201]

    [4]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Acta Phys. Sin. 62 110201 (in Chinese) [韩月林, 王肖肖, 张美玲, 贾利群 2013 62 110201]

    [5]

    Chen X W, Li Y M, Zhao Y H 2005 Phys. Lett. A 337 274

    [6]

    Luo S K, Li L 2013 Nonlinear Dyn. 73 639

    [7]

    Luo S K, Li L 2013 Nonlinear Dyn. 73 339

    [8]

    Luo S K, Li Z J, Peng W, Li L 2013 Acta Mech. 224 71

    [9]

    Luo S K, Li Z J, Li L 2012 Acta Mech. 223 2621

    [10]

    Jiang W A, Luo S K 2012 Nonlinear Dyn. 67 475

    [11]

    Wang X X, Han YL, Zhang M L, Jia L Q 2013 Chin. Phys. B 22 020201

    [12]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Nonlinear Dyn. 73 357

    [13]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2014 Journal of Mechanics. 30 21

    [14]

    Wang P, Fang J H, Wang X M 2009 Chin. Phys. B 18 1312

    [15]

    Fang J H 2010 Chin. Phys. B 19 040301

    [16]

    Cui J C, Han Y L, Jia L Q 2012 Chin. Phys. B 21 080201

    [17]

    Jia L Q, Xie Y L, Zhang Y Y, Yang X F 2010 Chin. Phys. B 19 110301

    [18]

    Jia L Q, Zhang M L, Wang X X, Han Y L 2012 Chin. Phys. B 21 070204

    [19]

    Wang X X, Sun X T, Zhang M L, Xie Y L, Jia L Q 2011 Chin. Phys. B 20 124501

    [20]

    Fang J H, Zhang B, Zhang W W, Xu R L 2012 Chin. Phys. B 21 050202

    [21]

    Zhang B, Fang J H, Zhang W W 2012 Chin. Phys. B 21 070208

    [22]

    Xia L L, Cai J L 2010 Chin. Phys. B 19 040302

    [23]

    Cai J L, Shi S S, Fang H J, Xu J 2012 Meccanica. 47 63

    [24]

    Huang W L, Cai J L 2012 Acta Mech. 223 433

    [25]

    Cai J L 2012 Nonlinear Dyn. 69 487

    [26]

    Han Y L, Sun X T, Zhang Y Y, Jia L Q 2013 Acta Phys. Sin. 62 160201 (in Chinese) [韩月林, 孙现亭, 张耀宇, 贾利群 2013 62 160201]

    [27]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems( Beijing: Science Press) (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用(北京: 科学学出版社)]

    [28]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量(北京: 北京理工大学出版社)]

    [29]

    Zhang M L, Wang X X, Han Y L, Jia L Q 2012 Journal of Yunnan University (Natural Sciences Edition) 34 664 (in Chinese) [张美玲, 王肖肖, 韩月林, 贾利群 2012 云南大学学报 34 664]

    [30]

    Chen X W, Zhao Y H, Li Y M 2009 Chin. Phys. B 18 3139

    [31]

    Zhang M L, Wang X X, Han Y L, Jia L Q 2012 Chin. Phys. B 21 100203

    [32]

    Xie Y L, Jia L Q, Luo S K 2011 Chin. Phys. B 20 010203

  • [1] 刘洪伟. 广义Hamilton系统的共形不变性与Mei守恒量.  , 2014, 63(5): 050201. doi: 10.7498/aps.63.050201
    [2] 王廷志, 孙现亭, 韩月林. 非完整系统的共形不变性导致的新型守恒量.  , 2014, 63(9): 090201. doi: 10.7498/aps.63.090201
    [3] 贾利群, 孙现亭, 张美玲, 张耀宇, 韩月林. 相对运动变质量力学系统Appell方程的广义Lie对称性导致的广义Hojman守恒量.  , 2014, 63(1): 010201. doi: 10.7498/aps.63.010201
    [4] 张芳, 李伟, 张耀宇, 薛喜昌, 贾利群. 变质量Chetaev型非完整系统Appell方程Mei对称性的共形不变性与守恒量.  , 2014, 63(16): 164501. doi: 10.7498/aps.63.164501
    [5] 孙现亭, 张耀宇, 张芳, 贾利群. 完整系统Appell方程Lie对称性的共形不变性与Hojman守恒量.  , 2014, 63(14): 140201. doi: 10.7498/aps.63.140201
    [6] 王廷志, 孙现亭, 韩月林. 相空间中相对运动完整力学系统的共形不变性与守恒量.  , 2014, 63(10): 104502. doi: 10.7498/aps.63.104502
    [7] 韩月林, 孙现亭, 张耀宇, 贾利群. 完整系统Appell方程Mei对称性的共形不变性与守恒量.  , 2013, 62(16): 160201. doi: 10.7498/aps.62.160201
    [8] 王廷志, 孙现亭, 韩月林. 相对运动变质量完整系统的共形不变性与守恒量.  , 2013, 62(23): 231101. doi: 10.7498/aps.62.231101
    [9] 陈蓉, 许学军. 单面Chetaev型非完整系统的共形不变性、Noether对称性和Lie对称性.  , 2012, 61(14): 141101. doi: 10.7498/aps.61.141101
    [10] 陈蓉, 许学军. 变质量完整系统的共形不变性和Noether对称性及Lie对称性.  , 2012, 61(2): 021102. doi: 10.7498/aps.61.021102
    [11] 刘洪伟, 李玲飞, 杨士通. Kepler方程的共形不变性、Mei对称性与守恒量.  , 2012, 61(20): 200202. doi: 10.7498/aps.61.200202
    [12] 蔡建乐, 史生水. Chetaev型非完整系统Mei对称性的共形不变性与守恒量.  , 2012, 61(3): 030201. doi: 10.7498/aps.61.030201
    [13] 贾利群, 解银丽, 罗绍凯. 相对运动动力学系统Appell方程Mei对称性导致的Mei守恒量.  , 2011, 60(4): 040201. doi: 10.7498/aps.60.040201
    [14] 李元成, 夏丽莉, 王小明, 刘晓巍. 完整系统Appell方程的Lie-Mei对称性与守恒量.  , 2010, 59(6): 3639-3642. doi: 10.7498/aps.59.3639
    [15] 蔡建乐. 一般完整系统Mei对称性的共形不变性与守恒量.  , 2009, 58(1): 22-27. doi: 10.7498/aps.58.22
    [16] 蔡建乐, 梅凤翔. Lagrange系统Lie点变换下的共形不变性与守恒量.  , 2008, 57(9): 5369-5373. doi: 10.7498/aps.57.5369
    [17] 刘 畅, 刘世兴, 梅凤翔, 郭永新. 广义Hamilton系统的共形不变性与Hojman守恒量.  , 2008, 57(11): 6709-6713. doi: 10.7498/aps.57.6709
    [18] 刘 畅, 梅凤翔, 郭永新. Lagrange系统的共形不变性与Hojman守恒量.  , 2008, 57(11): 6704-6708. doi: 10.7498/aps.57.6704
    [19] 张相武. 完整力学系统相对运动动力学方程的普遍形式.  , 2006, 55(6): 2669-2675. doi: 10.7498/aps.55.2669
    [20] 乔永芬, 张耀良, 赵淑红. 完整非保守系统Raitzin正则运动方程的积分因子和守恒定理.  , 2002, 51(8): 1661-1665. doi: 10.7498/aps.51.1661
计量
  • 文章访问数:  5840
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-09
  • 修回日期:  2015-01-04
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map