搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒介质的结构及热力学

孙其诚

引用本文:
Citation:

颗粒介质的结构及热力学

孙其诚

Granular structure and the nonequilibrium thermodynamics

Sun Qi-Cheng
PDF
导出引用
  • 颗粒介质具有远程无序和近程有序的结构, 是产生动力学不均匀性(dynamical heterogeneity) 和复杂不可逆过程的根源. 本文分析了颗粒介质的结构特征、变形和能量耗散之间的内在关联, 讨论了颗粒介质的弹性, 提出了流变应变增量、耦合应变增量和弹性应变增量的应变增量分解方式. 沿用非平衡热力学框架, 引入表征运动无序的动理学颗粒温度Tk和表征弹性应力涨落的构型温度Tc, 作为非平衡态变量, 建立了双颗粒温度热力学(two-granular-temperature thermodynamics, TGT理论), 注重分析了不可逆过程中的热力学力和流, 并与著名的砂土内变量热力学进行了对比.
    Granular materials posses disorder structures which are the origin of dynamical heterogeneity. On the basis of non-equilibrium thermodynamics, the structure characteristics, complex deformations, and energy dissipations are analysed. Based on the photoelastic tests, the granular elasticity is discussed. The strain increments are classified into three categories. By means of the non-equilibrium thermodynamics, two granular temperatures, Tk, Tc, are introduced as the state variables, which denote the fluctuations of the kinetic energy and the elastic energy, respectively. Further, a two-granular-temperature thermodynamics (i.e. TGT theory) are developed for granular materials. The thermodynamic forces and fluxes are particularly analyzed. TGT theory is also compared with the previous internal variable thermodynamics for sands (IVT theory) developed a few decades ago. It is found that from TGT the Gibbs free energy in the IVT theory can be deduced, and the energy dissipation function can be apparently expressed from TGT theory.
    • 基金项目: 国家自然科学基金(批准号: 11034010, 11272048, 51239006)、欧盟Marie Curie 国际合作项目(批准号: IRSES-294976)和清华大学自主科研计划资助的课题.
    • Funds: project supported by the National Natural Science Foundation of China(11034010, 11272048, 51239006), European Commission Marie Curie Actions(IRSES-294976) and Tsinghua University Initiative Scientific Research Program
    [1]

    Einstein A 1956 Investigations on the theory of the Brownian movement (New York: Dover)

    [2]

    Ogawa S, Umemura A, Oshima N 1980 ZAMP 31 483

    [3]

    Haff P K 1983 J Fluid Mech. 134 401

    [4]

    Lun C K K, Savage S B, Jeffrey D J, Chepurniy N 1984 J. Fluid Mech. 140 223

    [5]

    Jenkins J T, Savage S B 1983 Granular Mat. 130 187

    [6]

    Babic M, Shen H H 1989 J. Eng. Mech. 115 1262

    [7]

    Edwards S F, Oakeshott R B S 1989 Physica A 157 1080

    [8]

    Henkes S, O‘Hern C S, Chakraborty B 2007 Phys. Rev. Lett. 99 038002

    [9]

    Tighe B P, Vlugt T J H 2011 J. Stat. Mech. P04002

    [10]

    Tighe B P, Snoeijer J H, Vlugtc T J H, van Hecke M 2010 Soft Mat. 6 2908

    [11]

    Bi Z, Sun Q, Jin F 2011 Granular Mat. 13 503

    [12]

    Sun Q, Song S, Liu J, Fei M, Jin F 2013 Theoret. Appl. Mech. Lett. 3 021008

    [13]

    Sun Q, Jin F, Zhou G D 2013 Granular Mat. 15 119

    [14]

    Onsager L 1931 Phys. Rev 37 405

    [15]

    Prigogine I 1961 Introduction to Thermodynamics of Irreversible Processes (New York: Interscience)

    [16]

    Jou D, Casas-Vazquez J, Lebon G 2010 Extended Irreversible Thermodynamics (4th Ed.) (Berlin: Springer)

    [17]

    Ottinger H C 2005 Beyond Equilibrium Thermodynamics (New York:: Wiley-Interscience)

    [18]

    Collins I F, Houlsby G T 1997 Proceed. Royal Soc. A 453 1975

    [19]

    Houlsby G T, Puzrin A M 2007 Principles of Hyperplasticity: An Approach to Plasticity Theory Based on Thermodynamic Principles (Berlin: Springer)

    [20]

    Xu N 2011 Front. Phys. 6 109

    [21]

    Jiang Y M, Liu M 2009 Granular Mat. 11 139

    [22]

    Liu Z Y, Yang Y 2012 Intermetallics 26 86

    [23]

    Landau L D, Lifshitz E M 1986 Theory of Elasticity (3rd Ed.) (Butterworth-Heinemann)

    [24]

    Rice J R 1971 J. Math Phys. Solids 19 433

    [25]

    Jenkins J T 2006 Phys. Fluids 18 103307

    [26]

    Wang W H 2012 Prog. Mater. Sci. 57 487

  • [1]

    Einstein A 1956 Investigations on the theory of the Brownian movement (New York: Dover)

    [2]

    Ogawa S, Umemura A, Oshima N 1980 ZAMP 31 483

    [3]

    Haff P K 1983 J Fluid Mech. 134 401

    [4]

    Lun C K K, Savage S B, Jeffrey D J, Chepurniy N 1984 J. Fluid Mech. 140 223

    [5]

    Jenkins J T, Savage S B 1983 Granular Mat. 130 187

    [6]

    Babic M, Shen H H 1989 J. Eng. Mech. 115 1262

    [7]

    Edwards S F, Oakeshott R B S 1989 Physica A 157 1080

    [8]

    Henkes S, O‘Hern C S, Chakraborty B 2007 Phys. Rev. Lett. 99 038002

    [9]

    Tighe B P, Vlugt T J H 2011 J. Stat. Mech. P04002

    [10]

    Tighe B P, Snoeijer J H, Vlugtc T J H, van Hecke M 2010 Soft Mat. 6 2908

    [11]

    Bi Z, Sun Q, Jin F 2011 Granular Mat. 13 503

    [12]

    Sun Q, Song S, Liu J, Fei M, Jin F 2013 Theoret. Appl. Mech. Lett. 3 021008

    [13]

    Sun Q, Jin F, Zhou G D 2013 Granular Mat. 15 119

    [14]

    Onsager L 1931 Phys. Rev 37 405

    [15]

    Prigogine I 1961 Introduction to Thermodynamics of Irreversible Processes (New York: Interscience)

    [16]

    Jou D, Casas-Vazquez J, Lebon G 2010 Extended Irreversible Thermodynamics (4th Ed.) (Berlin: Springer)

    [17]

    Ottinger H C 2005 Beyond Equilibrium Thermodynamics (New York:: Wiley-Interscience)

    [18]

    Collins I F, Houlsby G T 1997 Proceed. Royal Soc. A 453 1975

    [19]

    Houlsby G T, Puzrin A M 2007 Principles of Hyperplasticity: An Approach to Plasticity Theory Based on Thermodynamic Principles (Berlin: Springer)

    [20]

    Xu N 2011 Front. Phys. 6 109

    [21]

    Jiang Y M, Liu M 2009 Granular Mat. 11 139

    [22]

    Liu Z Y, Yang Y 2012 Intermetallics 26 86

    [23]

    Landau L D, Lifshitz E M 1986 Theory of Elasticity (3rd Ed.) (Butterworth-Heinemann)

    [24]

    Rice J R 1971 J. Math Phys. Solids 19 433

    [25]

    Jenkins J T 2006 Phys. Fluids 18 103307

    [26]

    Wang W H 2012 Prog. Mater. Sci. 57 487

  • [1] 全海涛, 董辉, 孙昌璞. 介观统计热力学理论与实验.  , 2023, 72(23): 230501. doi: 10.7498/aps.72.20231608
    [2] 蒋亦民, 刘佑. 颗粒-颗粒接触力的热力学模型.  , 2018, 67(4): 044502. doi: 10.7498/aps.67.20171441
    [3] 金鑫鑫, 金峰, 刘宁, 孙其诚. 准静态颗粒介质的弹性势能弛豫分析.  , 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [4] 林乃波, 林友辉, 黄巧玲, 刘向阳. 超分子凝胶与介观结构.  , 2016, 65(17): 174702. doi: 10.7498/aps.65.174702
    [5] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫.  , 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [6] 房营光. 颗粒介质尺度效应的抗剪试验及物理机理分析.  , 2014, 63(3): 034502. doi: 10.7498/aps.63.034502
    [7] 刘中淼, 孙其诚, 宋世雄, 史庆藩. 准静态颗粒流流动规律的热力学分析.  , 2014, 63(3): 034702. doi: 10.7498/aps.63.034702
    [8] 刘汉涛, 刘谋斌, 常建忠, 苏铁熊. 介观尺度通道内多相流动的耗散粒子动力学模拟.  , 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [9] 常建忠, 刘汉涛, 刘谋斌, 苏铁熊. 介观尺度流体绕流球体的耗散粒子动力学模拟.  , 2012, 61(6): 064704. doi: 10.7498/aps.61.064704
    [10] 钱祖文. 颗粒介质中的粘滞系数.  , 2012, 61(13): 134301. doi: 10.7498/aps.61.134301
    [11] 董源, 过增元. 非平衡热力学中传热过程熵产表达式的修正.  , 2012, 61(3): 030507. doi: 10.7498/aps.61.030507
    [12] 李雪梅, 韩会磊, 何光普. LiNH2 的晶格动力学、介电性质和热力学性质第一性原理研究.  , 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [13] 彭政, 陆坤权, 厚美瑛. 阻塞态颗粒介质的慢速阻力.  , 2009, 58(9): 6566-6572. doi: 10.7498/aps.58.6566
    [14] 宜晨虹, 慕青松, 苗天德. 重力作用下颗粒介质应力链的离散元模拟.  , 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [15] 王 权, 丁建宁, 何宇亮, 薛 伟, 范 真. 氢化硅薄膜介观力学行为及其与微结构内禀关联特性.  , 2007, 56(8): 4834-4840. doi: 10.7498/aps.56.4834
    [16] 苗天德, 宜晨虹, 齐艳丽, 慕青松, 刘 源. 集中力作用下球形颗粒六角密排堆积体的传力研究.  , 2007, 56(8): 4713-4721. doi: 10.7498/aps.56.4713
    [17] 施方也, 方允樟, 孙怀君, 郑金菊, 林根金, 吴锋民. 应力退火Fe基纳米晶薄带横向磁各向异性的介观结构研究.  , 2007, 56(7): 4009-4016. doi: 10.7498/aps.56.4009
    [18] 刘玮书, 张波萍, 李敬锋, 刘 静. 机械合金化合成CoSb3过程中的固相反应机理的热力学解释.  , 2006, 55(1): 465-471. doi: 10.7498/aps.55.465
    [19] 沈惠川. 分析热力学的应用:平衡态热力学中温度的相对论变换.  , 2005, 54(6): 2482-2488. doi: 10.7498/aps.54.2482
    [20] 杨全民, 王玲玲, 孙德成. 介观结构对纳米晶软磁合金巨磁阻抗效应影响的理论分析.  , 2005, 54(12): 5730-5737. doi: 10.7498/aps.54.5730
计量
  • 文章访问数:  7792
  • PDF下载量:  488
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-12
  • 修回日期:  2014-11-06
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map