搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型甚低频电磁波对辐射带高能电子的散射损失效应

罗旭东 牛胜利 左应红

引用本文:
Citation:

典型甚低频电磁波对辐射带高能电子的散射损失效应

罗旭东, 牛胜利, 左应红

Diffusing loss effects of radiation belt energetic electrons caused by typical very low frequency electromagnetic wave

Luo Xu-Dong, Niu Sheng-Li, Zuo Ying-Hong
PDF
导出引用
  • 辐射带中高能电子与空间甚低频电磁波由于波粒共振相互作用发生投掷角散射, 进而沉降入稠密大气而损失. 为研究甚低频电磁波对辐射带中高能电子的散射作用机制, 本文基于准线性扩散理论, 利用库仑作用和波粒共振相互作用扩散系数的物理模型, 得到了两组典型甚低频电磁波与高能电子波粒共振相互作用的赤道投掷角弹跳周期平均扩散系数, 并分析了甚低频电磁波共振散射作用与大气库仑散射作用对不同磁壳及不同能量的辐射带电子扩散损失的影响规律. 以磁壳参数L=2.2, 能量E=0.5 MeV的辐射带电子作为算例, 采用有限差分方法数值求解扩散方程, 计算分析了电子单向通量和全向通量随时间的沉降损失演化规律. 研究结果表明: 当电子能量大于0.5 MeV, 磁壳参数大于1.6时, 甚低频电磁波的共振散射作用显著; 随着磁壳参数或电子能量的增大, 斜传播甚低频电磁波引起的高阶共振相互作用越来越大; 电子全向通量近似随时间呈指数函数形式衰减.
    Radiation belt energetic electrons can interact with very low frequency (VLF) electromagnetic wave due to wave-particle resonance; then the particles are imposed to enter into the loss cone and sink to dense atmosphere resulting from changing of its pitch angle. To investigate the diffusion mechanism of interaction of VLF electromagnetic wave with radiation belt energetic electrons, according to quasi-linear diffusion theory, in this paper we use a physical model to calculate diffusion coefficients of Coulomb scatting and wave-particle resonance interaction. Bounce-averaged pitch angle diffusion coefficients of energetic electrons due to the interaction of wave-particle resonance with two groups of VLF electromagnetic waves are obtained. The influence of interaction caused by VLF electromagnetic wave and Coulomb scatting on diffusion of radiation belt energetic electrons for different L shells and various energies are analyzed. Take the case for example, where L equals 2.2 and electron energy E equals 0.5 MeV, the diffusion equation of energetic electrons are solved by using the finite difference method. The time evolutions of precipitation of directional particle flux and omnidirectional particle flux are analyzed. The results show that the resonance interaction caused by VLF electromagnetic wave plays a dominant role when E>0.5 MeV and L>1.6; the higher the L shell or electron energy value, the more significant the high order resonance interaction caused by the oblique propagation VLF electromagnetic wave will be; approximately, the omnidirectional particle flux of radiation belt energetic electrons decreases exponentially with time.
    [1]

    Horne R B, Thorne R M, Shprits Y Y, Meredith N P, Glauert S A, Smith A J, Kanekal S G, Baker D N, Engebretson M J, Posch J L, Spasojevic M, Inan U S, Pickett J S, Decreau P M E 2005 Nature 437 227

    [2]

    Chang S S, Ni B B, Zhao Z Y, Gu X D, Zhou C 2014 Chin. Phys. B 23 089401

    [3]

    Dupont D G 2004 Scientific American 290 100

    [4]

    Graf K L, Inan U S, Piddyachiy D 2009 J. Geophys. Res. 38 114

    [5]

    Kennel C F, Petschek H E 1966 J. Geophys. Res. 7 1

    [6]

    Summers D 2005 J. Geophys. Res. A 110 08213

    [7]

    Shprits Y Y, Thorne R M, Horne R B, Summers D 2006 J. Geophys. Res. A 111 10225

    [8]

    Gu X D, Zhao Z Y, Ni B B, Wang X, Deng F 2008 Acta Phys. Sin. 57 6673 (in Chinese) [顾旭东, 赵正予, 倪彬彬, 王翔, 邓峰 2008 57 6673]

    [9]

    Wang P, Wang H Y, Ma Y Q, Li X Q, Lu H, Meng X C, Zhang J L, Wang H, Shi F, Xu Y B, Yu X X, Zhao X Y, Wu F 2011 Acta Phys. Sin. 60 039401 (in Chinese) [王平, 王焕玉, 马宇蒨, 李新乔, 卢红, 孟祥承, 张吉龙, 王辉, 石峰, 徐岩冰, 于晓霞, 赵小芸, 吴峰 2011 60 039401]

    [10]

    Zhang Z X, Wang C Y, Li Q, Wu S G 2014 Acta Phys. Sin. 63 079401 (in Chinese) [张振霞, 王辰宇, 李强, 吴书贵 2014 63 079401]

    [11]

    Walt M, MacDonald W 1964 Rev. Geophys. 2 543

    [12]

    Schulz M, Lanzerotti L J 1974 Particle Diffusion in the Radiation Belts (New York: Springer-Verlag Press) pp60

    [13]

    Kennel C F, Engelmann F 1966 Phys. Fluids 9 2377

    [14]

    Lyons L R 1974 J. Plasma Phys. 12 417

    [15]

    Walt M 1994 Introduction to Geomagnetically Trapped Radiation (London: Cambridge University Press) pp64, 115

    [16]

    Glauert S A Horne R B 2005 J. Geophys. Res. A 110 04206

    [17]

    Chen F F (Translated by Lin G H) 1980 Introduction to Plasma Physics (Beijing: People's Education Press) p77 (in Chinese) [Chen F F 著 (林光海 译) 1980等离子体物理学导论(北京: 人民教育出版社)第77页]

    [18]

    Lyons L R, Thorne R M, Kennel C F 1971 J. Plasma Phys. 6 589

    [19]

    Lyons L R, Thorne R M, Kennel C F 1972 J. Geophys. Res. 77 3455

    [20]

    Niu S L, Luo X D, Wang J G, Qiao D J 2011 Chin. J. Comput. Phys. 28 645 (in Chinese) [牛胜利, 罗旭东, 王建国, 乔登江 2011 计算物理 28 645]

    [21]

    Albert J M, Young S L 2005 Geophys. Res. Ett. 32L 14110

    [22]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2385

    [23]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2397

    [24]

    Shprits Y, Subbotin D, Ni B B, Horne R, Baker D, Cruce P 2011 Pace Weather 9 S08007

    [25]

    Lu J F, Guan Z 2004 Numerical Methods for Partial Differential Equations (2nd Ed.) (Beijing: Tsinghua University Press) pp83, 109 (in Chinese) [陆金甫, 关冶2004偏微分方程数值解法(第2版) (北京: 清华大学出版社)第83, 109页]

  • [1]

    Horne R B, Thorne R M, Shprits Y Y, Meredith N P, Glauert S A, Smith A J, Kanekal S G, Baker D N, Engebretson M J, Posch J L, Spasojevic M, Inan U S, Pickett J S, Decreau P M E 2005 Nature 437 227

    [2]

    Chang S S, Ni B B, Zhao Z Y, Gu X D, Zhou C 2014 Chin. Phys. B 23 089401

    [3]

    Dupont D G 2004 Scientific American 290 100

    [4]

    Graf K L, Inan U S, Piddyachiy D 2009 J. Geophys. Res. 38 114

    [5]

    Kennel C F, Petschek H E 1966 J. Geophys. Res. 7 1

    [6]

    Summers D 2005 J. Geophys. Res. A 110 08213

    [7]

    Shprits Y Y, Thorne R M, Horne R B, Summers D 2006 J. Geophys. Res. A 111 10225

    [8]

    Gu X D, Zhao Z Y, Ni B B, Wang X, Deng F 2008 Acta Phys. Sin. 57 6673 (in Chinese) [顾旭东, 赵正予, 倪彬彬, 王翔, 邓峰 2008 57 6673]

    [9]

    Wang P, Wang H Y, Ma Y Q, Li X Q, Lu H, Meng X C, Zhang J L, Wang H, Shi F, Xu Y B, Yu X X, Zhao X Y, Wu F 2011 Acta Phys. Sin. 60 039401 (in Chinese) [王平, 王焕玉, 马宇蒨, 李新乔, 卢红, 孟祥承, 张吉龙, 王辉, 石峰, 徐岩冰, 于晓霞, 赵小芸, 吴峰 2011 60 039401]

    [10]

    Zhang Z X, Wang C Y, Li Q, Wu S G 2014 Acta Phys. Sin. 63 079401 (in Chinese) [张振霞, 王辰宇, 李强, 吴书贵 2014 63 079401]

    [11]

    Walt M, MacDonald W 1964 Rev. Geophys. 2 543

    [12]

    Schulz M, Lanzerotti L J 1974 Particle Diffusion in the Radiation Belts (New York: Springer-Verlag Press) pp60

    [13]

    Kennel C F, Engelmann F 1966 Phys. Fluids 9 2377

    [14]

    Lyons L R 1974 J. Plasma Phys. 12 417

    [15]

    Walt M 1994 Introduction to Geomagnetically Trapped Radiation (London: Cambridge University Press) pp64, 115

    [16]

    Glauert S A Horne R B 2005 J. Geophys. Res. A 110 04206

    [17]

    Chen F F (Translated by Lin G H) 1980 Introduction to Plasma Physics (Beijing: People's Education Press) p77 (in Chinese) [Chen F F 著 (林光海 译) 1980等离子体物理学导论(北京: 人民教育出版社)第77页]

    [18]

    Lyons L R, Thorne R M, Kennel C F 1971 J. Plasma Phys. 6 589

    [19]

    Lyons L R, Thorne R M, Kennel C F 1972 J. Geophys. Res. 77 3455

    [20]

    Niu S L, Luo X D, Wang J G, Qiao D J 2011 Chin. J. Comput. Phys. 28 645 (in Chinese) [牛胜利, 罗旭东, 王建国, 乔登江 2011 计算物理 28 645]

    [21]

    Albert J M, Young S L 2005 Geophys. Res. Ett. 32L 14110

    [22]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2385

    [23]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2397

    [24]

    Shprits Y, Subbotin D, Ni B B, Horne R, Baker D, Cruce P 2011 Pace Weather 9 S08007

    [25]

    Lu J F, Guan Z 2004 Numerical Methods for Partial Differential Equations (2nd Ed.) (Beijing: Tsinghua University Press) pp83, 109 (in Chinese) [陆金甫, 关冶2004偏微分方程数值解法(第2版) (北京: 清华大学出版社)第83, 109页]

  • [1] 李晨璞, 吴魏霞, 张礼刚, 胡金江, 谢革英, 郑志刚. 具有不同扩散系数的活性手征粒子分离.  , 2024, 73(20): 200201. doi: 10.7498/aps.73.20240686
    [2] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟.  , 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [3] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响.  , 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [4] 李阳, 宋永顺, 黎明, 周昕. 碳纳米管中水孤立子扩散现象的模拟研究.  , 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [5] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算.  , 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [6] 孟伟东, 孙丽存, 翟影, 杨瑞芬, 普小云. 用液芯柱透镜快速测量液相扩散系数-折射率空间分布瞬态测量法.  , 2015, 64(11): 114205. doi: 10.7498/aps.64.114205
    [7] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒. 相变材料热物理性质的分子动力学模拟.  , 2013, 62(5): 056601. doi: 10.7498/aps.62.056601
    [8] 张首誉, 包尚联, 亢孝俭, 高嵩. 描述人体内水分子扩散各向异性特征的新方法.  , 2013, 62(20): 208703. doi: 10.7498/aps.62.208703
    [9] 李强, 普小云. 用毛细管成像法测量液相扩散系数——等折射率薄层测量方法.  , 2013, 62(9): 094206. doi: 10.7498/aps.62.094206
    [10] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移.  , 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [11] 王振中, 王楠, 姚文静. 低扩散系数对Pd77Cu6Si17合金易非晶化的影响.  , 2010, 59(10): 7431-7436. doi: 10.7498/aps.59.7431
    [12] 吕耀平, 顾国锋, 陆华春, 戴瑜, 唐国宁. 在不同扩散系数下反应扩散平面波的折射.  , 2009, 58(5): 2996-3000. doi: 10.7498/aps.58.2996
    [13] 卢宏, 覃莉, 包景东. 周期场中非各态历经布朗运动.  , 2009, 58(12): 8127-8133. doi: 10.7498/aps.58.8127
    [14] 李万万, 孙 康. Cd0.9Zn0.1Te晶体的Cd气氛扩散热处理研究.  , 2007, 56(11): 6514-6520. doi: 10.7498/aps.56.6514
    [15] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究.  , 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
    [16] 郑永真, 齐昌炜, 丁玄同, 郦文忠. 托卡马克等离子体中内部磁扰动的测量研究.  , 2006, 55(1): 294-298. doi: 10.7498/aps.55.294
    [17] 李万万, 孙 康. Cd1-xZnxTe晶体的In气氛扩散热处理研究.  , 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
    [18] 杨 靖, 李景镇, 孙秀泉, 龚向东. 硅烷低温等离子体阶跃响应的仿真(1).  , 2005, 54(7): 3251-3256. doi: 10.7498/aps.54.3251
    [19] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运.  , 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [20] 张希清, 赵家龙, 秦伟平, 窦凯, 黄世华. 用非相干光时间延迟四波混频测量二极扩散系数.  , 1993, 42(3): 417-421. doi: 10.7498/aps.42.417
计量
  • 文章访问数:  6222
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-18
  • 修回日期:  2014-10-13
  • 刊出日期:  2015-03-05

/

返回文章
返回
Baidu
map