搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氘含量对DKDP晶体横向受激拉曼散射增益系数的影响

柴向旭 李富全 王圣来 冯斌 朱启华 刘宝安 孙洵 许心光

引用本文:
Citation:

氘含量对DKDP晶体横向受激拉曼散射增益系数的影响

柴向旭, 李富全, 王圣来, 冯斌, 朱启华, 刘宝安, 孙洵, 许心光

Influence of deuteration degree on the transverse stimulated Raman scattering gain coefficient of DKDP crystal

Chai Xiang-Xu, Li Fu-Quan, Wang Sheng-Lai, Feng Bin, Zhu Qi-Hua, Liu Bao-An, Sun Xun, Xu Xin-Guang
PDF
导出引用
  • 本文测量了不同氘含量K(H1-xDx)2PO4晶体(DKDP晶体)在Z(XX)Y散射配置下的自发拉曼散射光谱, 并详细分析了氘含量对与横向受激拉曼散射(TSRS)增益系数有关的拉曼频移、半峰宽和散射强度的影响. 然后通过与去离子水拉曼散射对比得出了不同氘含量DKDP晶体的TSRS增益系数. 结果表明随着氘含量的增加DKDP晶体的TSRS增益系数先减小至KDP晶体的40.1%, 后增大至68.9%; 本文认为掺氘后拉曼半峰宽的变化是引起TSRS增益系数随氘含量变化的主要原因.
    In this paper, the spontaneous Raman spectra of K(H1-xDx)2PO4 (DKDP) crystals with different deuteration degrees in the Z(XX)Y scattering geometry are measured. And the Raman spectroscopy parameters including Raman shift, full-width at half maximum, and scattering intensity, which are related to the transverse stimulated Raman scattering (TSRS) gain coefficients, are analyzed in detail. Using the Raman scattering from water as a reference, the TSRS gain coefficients of DKDP crystals with different deuteration degrees are derived. It is found that with increasing deuteration degree in DKDP crystal the TSRS gain coefficient first decreases to about 40.1% of the KDP crystal, then increases to about 68.9%. We regard the change of the full-width at half maximum as the main reason for the dependence of TSRS gain coefficient on the deuteration degree.
    [1]

    Zhang K C, Wang X M 2005 Nonlinear optical crystal material science (Second edition, Beijing: Science Press) pp133-151 (In Chinese) [张克从, 王希敏 2005 非线性光学晶体材料科学 (第二版, 北京: 科学出版社)第133–151页]

    [2]

    Yang Y S, Zheng W G, Han W, Che Y L, Tan J C, Xiang Y, Jia H T 2007 Acta Phys. Sin. 56 6468 (in Chinese) [杨义胜, 郑万国, 韩伟, 车雅良, 谭吉春, 向勇, 贾怀庭 2007 56 6468]

    [3]

    Wang J, Zhang X M, Li F Q, Han W, Li K Y, Fen B 2011 Chin. J. Lasers 38 0502011 (in Chinese) [王静, 张小民, 李富全, 韩伟, 李恪宇, 冯斌 2011 中国激光 38 0502011]

    [4]

    Barker C E, Sacks R A, Van Wonterghem B M, Caird J A, Murray J R, Campbell J H, Kyle K, Ehrlich R B, Nielsen N D 1997 Proc. SPIE 2633 501

    [5]

    Novikov V N, Belkov S A, Buiko S A, Voronich I N, Efimov D G, Zaretsky A I, Kochemasov G G, Kravchenko A G, Kulikov S M, Lebedev V A, Okutin G P, Rukavishnikov N N, Sukharev S A 1999 Proc. SPIE 3492 1009

    [6]

    Shur M S 1966 Soviet Phys. Crystallography 11 394

    [7]

    Chai X X, Zhu Q H, Li F Q, Wang S L, Zhou H L, Xu X G 2014 High Power Laser and Particle Beams 26 022014 (in Chinese) [柴向旭, 朱启华, 李富全, 王圣来, 周海亮, 许心光 2014 强激光与粒子束 26 022014]

    [8]

    Ji L L, Zhu B Q, Zhan T Y, Dai Y P, Zhu J, Ma W X, Lin Z Q 2011 Acta Phys. Sin. 60 094210 (in Chinese) [季来林, 朱宝强, 詹廷宇, 戴亚平, 朱检, 马伟新, 林尊琪2011 60 094210]

    [9]

    Wegner P J, Henesian M A, Speck D R, Bibeau C, Ehrlich R B, Laumann C W, Lawson J K, Weiland T L 1992 Appl. Opt. 31 6414

    [10]

    Han W, Wang F, Zhou L D, Li F Q, Feng B, Cao H B, Zhao J P, Li S, Zheng K X, Wei X F, Gong M L, Zheng W G 2013 Opt Express 21 30481

    [11]

    Smith W L, Henesian M A, Milanovich F P 1984 1983 Laser Program Annual Report (UCRL-50021-83) (Livermore CA: Lawrence Livermore National Laboratory) 6 61

    [12]

    Belkov S A, Kochemasov G G, Kulikov S M, Novikov V N, Rukavishnikov N N, Sukharev S A, Voronich I N, Zaretski A I 1997 Proc. SPIE 2633 506

    [13]

    Guo Y J, Tang S X, Hui H C, Wang Y Y, Tang W, Zhu B Q, Lin Z Q 2013 Proc. SPIE 8786 87860U

    [14]

    Demos S G, Raman R N, Yang S T, Negres R A, Schaffers K I, Henesian M A 2011 Opt. Express 19 21050

    [15]

    Demos S G, Raman R N, Yang S T, Negres R A, Schaffers K I, Henesian M A 2011 Proc. SPIE 8190 81900S

    [16]

    Cheng G X 2001 Principle and application of Raman and Brillouin scattering (Beijing: Science Press) pp 32-83 (In Chinese) [程光熙 2001 拉曼布里渊散射原理及应用 (北京: 科学出版社) 第32–83页]

    [17]

    Wang Q G, Su L B, Li H J, Xiong W, Yuan H, Zheng L H, Xu X D, Wu F, Tang H L, Jiang D P, Xu J 2012 Chin. Phys. B 21 054217

    [18]

    Maier M, Kaiser W 1969 Phys. Rev. 177 580

    [19]

    Loudon R 1964 Advan. Phys. 13 423

    [20]

    Liu B A, Yin X, Sun X, Xu M X, Ji S H, Xu X G, Zhang J F 2012 J. Appl. Cryst. 45 439

    [21]

    Liu B A, Zhou H L, Zhang Q H, Xu M X, Ji S H, Zhu L L, Zhang L S, Liu F F, Sun X, Xu X G 2013 Chin. Phys. Lett. 30 067804

    [22]

    Loiacono G M, Balascio J F, Osborne W 1974 Appl. Phys. Lett. 24 455

    [23]

    Wang K P, Huang Y 2011 Chin. Phys. B 20 077401

    [24]

    Ye L W, Li Z D, Su G B, Zhuang X X, Zheng G Z 2007 Opt. Commun. 275 399

    [25]

    Carollne M P, Adams W A 1979 J. Phys. Chem. 83 814

    [26]

    Tun Z, Nelmes R J, Kuhs W F, Stanfield R F D 1988 J. Phys. C 21 245

    [27]

    Anachkova E, Savatinova I 1985 Phys. Stat. Sol. (b) 131 K101

    [28]

    Li Z 2005 M. S. Thesis (Beijing: Beijing University of Technology) (In Chinese) [李政 2005 硕士学位论文 (北京: 北京工业大学)]

    [29]

    Chang R K, Lacina B, Pershan P S 1966 Phys. Rev. Lett. 17 755

    [30]

    Lacina W B, Pershan P S. 1970 Phys. Rev. B 1 1765

    [31]

    Bischel W K, Black G. 1983 AIP Conf. Proc. 100 181

    [32]

    Faris G W, Copeland R A 1997 Appl. Opt. 36 2686

    [33]

    Schiebener P, Straub J, Sengers J M H L, Gallagher J S 1990 J. Phys. Chem. Ref. Data 19 677

    [34]

    Yakshin M A, Kim D W, Kim Y S, Broslavets Y Y, Sidoryuk O E, Goldstein S 1997 Laser Phys. 7 941

    [35]

    Huser T, Hollars C W, Siekhaus W J 2004 Appl. Spectrosc. 58 349

  • [1]

    Zhang K C, Wang X M 2005 Nonlinear optical crystal material science (Second edition, Beijing: Science Press) pp133-151 (In Chinese) [张克从, 王希敏 2005 非线性光学晶体材料科学 (第二版, 北京: 科学出版社)第133–151页]

    [2]

    Yang Y S, Zheng W G, Han W, Che Y L, Tan J C, Xiang Y, Jia H T 2007 Acta Phys. Sin. 56 6468 (in Chinese) [杨义胜, 郑万国, 韩伟, 车雅良, 谭吉春, 向勇, 贾怀庭 2007 56 6468]

    [3]

    Wang J, Zhang X M, Li F Q, Han W, Li K Y, Fen B 2011 Chin. J. Lasers 38 0502011 (in Chinese) [王静, 张小民, 李富全, 韩伟, 李恪宇, 冯斌 2011 中国激光 38 0502011]

    [4]

    Barker C E, Sacks R A, Van Wonterghem B M, Caird J A, Murray J R, Campbell J H, Kyle K, Ehrlich R B, Nielsen N D 1997 Proc. SPIE 2633 501

    [5]

    Novikov V N, Belkov S A, Buiko S A, Voronich I N, Efimov D G, Zaretsky A I, Kochemasov G G, Kravchenko A G, Kulikov S M, Lebedev V A, Okutin G P, Rukavishnikov N N, Sukharev S A 1999 Proc. SPIE 3492 1009

    [6]

    Shur M S 1966 Soviet Phys. Crystallography 11 394

    [7]

    Chai X X, Zhu Q H, Li F Q, Wang S L, Zhou H L, Xu X G 2014 High Power Laser and Particle Beams 26 022014 (in Chinese) [柴向旭, 朱启华, 李富全, 王圣来, 周海亮, 许心光 2014 强激光与粒子束 26 022014]

    [8]

    Ji L L, Zhu B Q, Zhan T Y, Dai Y P, Zhu J, Ma W X, Lin Z Q 2011 Acta Phys. Sin. 60 094210 (in Chinese) [季来林, 朱宝强, 詹廷宇, 戴亚平, 朱检, 马伟新, 林尊琪2011 60 094210]

    [9]

    Wegner P J, Henesian M A, Speck D R, Bibeau C, Ehrlich R B, Laumann C W, Lawson J K, Weiland T L 1992 Appl. Opt. 31 6414

    [10]

    Han W, Wang F, Zhou L D, Li F Q, Feng B, Cao H B, Zhao J P, Li S, Zheng K X, Wei X F, Gong M L, Zheng W G 2013 Opt Express 21 30481

    [11]

    Smith W L, Henesian M A, Milanovich F P 1984 1983 Laser Program Annual Report (UCRL-50021-83) (Livermore CA: Lawrence Livermore National Laboratory) 6 61

    [12]

    Belkov S A, Kochemasov G G, Kulikov S M, Novikov V N, Rukavishnikov N N, Sukharev S A, Voronich I N, Zaretski A I 1997 Proc. SPIE 2633 506

    [13]

    Guo Y J, Tang S X, Hui H C, Wang Y Y, Tang W, Zhu B Q, Lin Z Q 2013 Proc. SPIE 8786 87860U

    [14]

    Demos S G, Raman R N, Yang S T, Negres R A, Schaffers K I, Henesian M A 2011 Opt. Express 19 21050

    [15]

    Demos S G, Raman R N, Yang S T, Negres R A, Schaffers K I, Henesian M A 2011 Proc. SPIE 8190 81900S

    [16]

    Cheng G X 2001 Principle and application of Raman and Brillouin scattering (Beijing: Science Press) pp 32-83 (In Chinese) [程光熙 2001 拉曼布里渊散射原理及应用 (北京: 科学出版社) 第32–83页]

    [17]

    Wang Q G, Su L B, Li H J, Xiong W, Yuan H, Zheng L H, Xu X D, Wu F, Tang H L, Jiang D P, Xu J 2012 Chin. Phys. B 21 054217

    [18]

    Maier M, Kaiser W 1969 Phys. Rev. 177 580

    [19]

    Loudon R 1964 Advan. Phys. 13 423

    [20]

    Liu B A, Yin X, Sun X, Xu M X, Ji S H, Xu X G, Zhang J F 2012 J. Appl. Cryst. 45 439

    [21]

    Liu B A, Zhou H L, Zhang Q H, Xu M X, Ji S H, Zhu L L, Zhang L S, Liu F F, Sun X, Xu X G 2013 Chin. Phys. Lett. 30 067804

    [22]

    Loiacono G M, Balascio J F, Osborne W 1974 Appl. Phys. Lett. 24 455

    [23]

    Wang K P, Huang Y 2011 Chin. Phys. B 20 077401

    [24]

    Ye L W, Li Z D, Su G B, Zhuang X X, Zheng G Z 2007 Opt. Commun. 275 399

    [25]

    Carollne M P, Adams W A 1979 J. Phys. Chem. 83 814

    [26]

    Tun Z, Nelmes R J, Kuhs W F, Stanfield R F D 1988 J. Phys. C 21 245

    [27]

    Anachkova E, Savatinova I 1985 Phys. Stat. Sol. (b) 131 K101

    [28]

    Li Z 2005 M. S. Thesis (Beijing: Beijing University of Technology) (In Chinese) [李政 2005 硕士学位论文 (北京: 北京工业大学)]

    [29]

    Chang R K, Lacina B, Pershan P S 1966 Phys. Rev. Lett. 17 755

    [30]

    Lacina W B, Pershan P S. 1970 Phys. Rev. B 1 1765

    [31]

    Bischel W K, Black G. 1983 AIP Conf. Proc. 100 181

    [32]

    Faris G W, Copeland R A 1997 Appl. Opt. 36 2686

    [33]

    Schiebener P, Straub J, Sengers J M H L, Gallagher J S 1990 J. Phys. Chem. Ref. Data 19 677

    [34]

    Yakshin M A, Kim D W, Kim Y S, Broslavets Y Y, Sidoryuk O E, Goldstein S 1997 Laser Phys. 7 941

    [35]

    Huser T, Hollars C W, Siekhaus W J 2004 Appl. Spectrosc. 58 349

  • [1] 王聪, 吕冬翔. 基于抽运-探测法的皮秒反斯托克斯拉曼频移器的理论研究.  , 2021, 70(9): 094202. doi: 10.7498/aps.70.20201353
    [2] 王傲霜, 肖清泉, 陈豪, 何安娜, 秦铭哲, 谢泉. Mg2Si/Si雪崩光电二极管的设计与模拟.  , 2021, 70(10): 108501. doi: 10.7498/aps.70.20201923
    [3] 刘涛, 赵永蓬, 丁宇洁, 李小强, 崔怀愈, 姜杉. 毛细管放电类氖氩69.8 nm激光增益特性研究.  , 2017, 66(15): 155201. doi: 10.7498/aps.66.155201
    [4] 王美洁, 贾维国, 张思远, 门克内木乐, 杨军, 张俊萍. 低双折射光纤中拉曼增益对光偏振态的影响.  , 2015, 64(3): 034212. doi: 10.7498/aps.64.034212
    [5] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定.  , 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [6] 乔海龙, 贾维国, 王旭东, 刘宝林, 门克内木乐, 杨军, 张俊萍. 拉曼增益对双折射光纤中孤子传输特性的影响.  , 2014, 63(9): 094208. doi: 10.7498/aps.63.094208
    [7] 乔海龙, 贾维国, 刘宝林, 王旭东, 门克内木乐, 杨军, 张俊萍. 拉曼增益对孤子传输特性的影响.  , 2013, 62(10): 104212. doi: 10.7498/aps.62.104212
    [8] 陈蔚, 陈学岗, 史久林, 何兴道, 莫小凤, 刘娟. 变温条件下受激布里渊散射增益系数的实验测量.  , 2013, 62(10): 104213. doi: 10.7498/aps.62.104213
    [9] 杨金金, 李慧军, 文文, 黄国翔. n型主动拉曼增益原子介质中的光学双稳态.  , 2012, 61(22): 224204. doi: 10.7498/aps.61.224204
    [10] 贾维国, 乔丽荣, 王旭颖, 门克内木乐, 杨军, 张俊萍. 拉曼效应和参量放大共同作用下增益谱特性.  , 2012, 61(19): 194209. doi: 10.7498/aps.61.194209
    [11] 贾维国, 乔丽荣, 王旭颖, 杨军, 张俊萍, 门克内木乐. 双折射光纤中拉曼效应对参量放大增益谱的影响.  , 2012, 61(9): 094215. doi: 10.7498/aps.61.094215
    [12] 刘组学, 冯鸣, 郭清华, 乔丽, 吕可诚. 硅基拉曼放大器增益的理论分析.  , 2011, 60(1): 014214. doi: 10.7498/aps.60.014214
    [13] 段宝兴, 杨银堂. 利用Keating模型计算Si(1-x)Gex及非晶硅的拉曼频移.  , 2009, 58(10): 7114-7118. doi: 10.7498/aps.58.7114
    [14] 鲁翠萍, 袁春华, 张卫平. 受激拉曼增益介质中的量子噪声特性研究.  , 2008, 57(11): 6976-6981. doi: 10.7498/aps.57.6976
    [15] 乔秀梅, 张国平. 瞬态电子碰撞激发类氖锗19.6nm X射线激光的理论研究.  , 2007, 56(9): 5248-5251. doi: 10.7498/aps.56.5248
    [16] 朱 骏, 毛翔宇, 陈小兵. Bi4-xLaxTi3O12-SrBi4Ti4O15,共生结构铁电材料拉曼光谱研究.  , 2004, 53(11): 3929-3933. doi: 10.7498/aps.53.3929
    [17] 普小云, 杨 正, 江 楠, 陈永康, 戴 宏. 用激光增益获取弱增益拉曼模式的受激拉曼散射光谱.  , 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
    [18] 袁保红, 陈钟贤, 姜永远, 孙秀冬, 周忠祥, 姚凤凤. 光折变聚合物中斩波调制对二波耦合增益系数的增强效应.  , 2002, 51(7): 1512-1516. doi: 10.7498/aps.51.1512
    [19] 陶振兰, D.E. AlBURGER, K.W. JONES, Y.D. YAO, Y.H. KAO. 利用氘粒子活化分析测定高温超导体中的氧含量.  , 1993, 42(2): 326-330. doi: 10.7498/aps.42.326
    [20] 朱德瑞, 王韧, 谭健华, 莫党. 掺杂的铌酸钾钠锶钡晶体的二波耦合增益系数的研究.  , 1992, 41(9): 1440-1447. doi: 10.7498/aps.41.1440
计量
  • 文章访问数:  6009
  • PDF下载量:  501
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-08
  • 修回日期:  2014-08-18
  • 刊出日期:  2015-02-05

/

返回文章
返回
Baidu
map