搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

群体迁移行为的理论与实证研究

封晨洁 王鹏 王旭明

引用本文:
Citation:

群体迁移行为的理论与实证研究

封晨洁, 王鹏, 王旭明

Theoretical and empirical studies on group behaviors

Feng Chen-Jie, Wang Peng, Wang Xu-Ming
PDF
导出引用
  • 人类行为往往取决于经济社会的某种趋势性影响, 对其动力学的定量描述和准确理解是当前复杂系统研究的热点. 本文提出由迁移距离, 迁移人口年龄和迁出地经济人口密度所描述的群体迁移欲望函数, 及广义势. 借助于朗之万方程, 将其转变为Hamilton-Jacobi方程, 从而对群体决策行为进行统计理论分析. 采用高维最陡降线的方式求解Hamilton-Jacobi方程. 其解的形式揭示了群体迁移过程中信息熵随着迁移群体年龄的变化呈现一个单峰; 信息熵对迁移距离的二阶导随迁移距离而穿零变化(对应一种相变); 信息熵随着经济人口密度也呈现单峰. 进一步分析信息熵的这些变化规律所蕴含的意义及其机理, 从而获得对人类群体迁移行为的新理解, 为政府管理提供参考和启示.
    Human behaviors are usually determined by some social and/or economic trend. In the past few years, many attempts have been made, in the field of complex scientific systems, to describe the dynamics of these behaviors quantitatively and have an accurate understanding of the corresponding mechanisms. In this paper, a generalized potential, that is, a migration desire function defined by the age of the migrating people, the migrating distance, and the so-called economic-population density of the emigration area, is proposed. It can be transformed into Hamilton-Jacobi equation by using a random dynamical method, Langevin equation, so that the decision-making behavior can be investigated, based on a statistic framework during a group migration process. By taking use of the multi-dimensional steepest descent method, the Hamilton-Jacobi equation is solved; the solution shows that the information entropy of the system varies, leading by a single peak, as the age of the migrating people increases. It also demonstrates that the second derivative of the migrating distance to the information entropy has a change of zero-crossing (which actually means a phase change). The third characteristic of the solution is that the information entropy follows another single peak as the economic-population density increases. A deeper analysis reveals the significance behind these findings and the corresponding mechanisms. So some new understandings of the group human behaviors can be obtained, and some worthy references can be provided for some related administrative offices.
    • 基金项目: 国家自然科学基金(批准号: 11265011)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11265011).
    [1]

    Barabasi A L 2005 Nature 435 207

    [2]

    Li N N, Zhou T, Zhang N 2008 Complex System and Complexity Science 5(2) 15 (in Chinese) [李楠楠, 周涛, 张宁 2008 复杂系统与复杂性科学 5(2) 15]

    [3]

    Fan C, Guo J L, Han X P, Wang B H 2011 Complex System and Complexity Science 8(2) 1 (in Chines) [樊超, 郭进利, 韩筱璞, 汪秉宏2011 复杂系统与复杂性科学, 8(2) 1]

    [4]

    Boyd R, Richerson P J 2009 J. Theor. Biol. 257 331

    [5]

    Reynolds C 1987 Comput. Graph. 21 25

    [6]

    Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O 1995 Phys. Rev. Lett. 75 1226

    [7]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487

    [8]

    Sung M, Gleicher M, Chenney S 2004 Eurographics 23 519

    [9]

    Nie L R, Mei D C 2007 EPL 79 20005

    [10]

    Corradini O, Faccioli P, Orland H 2009 Phys. Rev. E 80 061112

    [11]

    Faccioli P, Sega M, Pederiva F, Orland H 2006 Phys. Rev. Lett. 97 108101

    [12]

    Chai L H 2004 Int. J. Therm. Sci. 43 1067

    [13]

    Haken H 1983 Advanced Synergetics (Berlin: Springer-Verlag) 42

    [14]

    Gong K, Tang M, Shang M S, Zhou T 2012 Acta Phys. Sin. 61 098901 (in Chinese) [龚凯, 唐明, 尚明生, 周涛 2012 61 098901]

    [15]

    González M C, Hidalgo C A, Barabási A L 2008 Nature 453 779

    [16]

    Brockmann D D, Hufnagel L, Geisel T 2006 Nature 439 462

    [17]

    Sega M, Faccioli P, Pederiva F, Garberoglio G, Orland H 2007 Phys. Rev. Lett. 99 118102

    [18]

    18Ovidiu C 2009 Asymptotics and Borel summability (Boca Raton: Chapman & Hall/CRC Press) pp33-88

    [19]

    Lin Z Q, Ye G X 2013 Chin. Phys. B 22 058201

    [20]

    Xu X L, Fu C H, Liu C P, He D R 2010 Chin. Phys. B 19 060501R

  • [1]

    Barabasi A L 2005 Nature 435 207

    [2]

    Li N N, Zhou T, Zhang N 2008 Complex System and Complexity Science 5(2) 15 (in Chinese) [李楠楠, 周涛, 张宁 2008 复杂系统与复杂性科学 5(2) 15]

    [3]

    Fan C, Guo J L, Han X P, Wang B H 2011 Complex System and Complexity Science 8(2) 1 (in Chines) [樊超, 郭进利, 韩筱璞, 汪秉宏2011 复杂系统与复杂性科学, 8(2) 1]

    [4]

    Boyd R, Richerson P J 2009 J. Theor. Biol. 257 331

    [5]

    Reynolds C 1987 Comput. Graph. 21 25

    [6]

    Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O 1995 Phys. Rev. Lett. 75 1226

    [7]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487

    [8]

    Sung M, Gleicher M, Chenney S 2004 Eurographics 23 519

    [9]

    Nie L R, Mei D C 2007 EPL 79 20005

    [10]

    Corradini O, Faccioli P, Orland H 2009 Phys. Rev. E 80 061112

    [11]

    Faccioli P, Sega M, Pederiva F, Orland H 2006 Phys. Rev. Lett. 97 108101

    [12]

    Chai L H 2004 Int. J. Therm. Sci. 43 1067

    [13]

    Haken H 1983 Advanced Synergetics (Berlin: Springer-Verlag) 42

    [14]

    Gong K, Tang M, Shang M S, Zhou T 2012 Acta Phys. Sin. 61 098901 (in Chinese) [龚凯, 唐明, 尚明生, 周涛 2012 61 098901]

    [15]

    González M C, Hidalgo C A, Barabási A L 2008 Nature 453 779

    [16]

    Brockmann D D, Hufnagel L, Geisel T 2006 Nature 439 462

    [17]

    Sega M, Faccioli P, Pederiva F, Garberoglio G, Orland H 2007 Phys. Rev. Lett. 99 118102

    [18]

    18Ovidiu C 2009 Asymptotics and Borel summability (Boca Raton: Chapman & Hall/CRC Press) pp33-88

    [19]

    Lin Z Q, Ye G X 2013 Chin. Phys. B 22 058201

    [20]

    Xu X L, Fu C H, Liu C P, He D R 2010 Chin. Phys. B 19 060501R

  • [1] 宋彤彤, 罗杰, 赖耘. 赝局域有效介质理论.  , 2020, 69(15): 154203. doi: 10.7498/aps.69.20200196
    [2] 翟韩豫, 申佳音, 薛迅. 源自弦景观的有效Quintessence.  , 2019, 68(13): 139501. doi: 10.7498/aps.68.20190282
    [3] 杨树政, 林恺. 洛仑兹破缺标量场的霍金隧穿辐射.  , 2019, 68(6): 060401. doi: 10.7498/aps.68.20182050
    [4] 蒲瑾, 杨树政, 林恺. 洛伦兹破缺理论与Vaidya黑洞弯曲时空中的Dirac粒子隧穿辐射特征.  , 2019, 68(19): 190401. doi: 10.7498/aps.68.20190437
    [5] 王勇, 梅凤翔, 肖静, 郭永新. 一类可用Hamilton-Jacobi方法求解的非保守Hamilton系统.  , 2017, 66(5): 054501. doi: 10.7498/aps.66.054501
    [6] 韩忠明, 陈炎, 李梦琪, 刘雯, 杨伟杰. 一种有效的基于三角结构的复杂网络节点影响力度量模型.  , 2016, 65(16): 168901. doi: 10.7498/aps.65.168901
    [7] 康艳霜, 孙宗利. 荷电流体中静电关联效应的有效势模型.  , 2014, 63(13): 136101. doi: 10.7498/aps.63.136101
    [8] 杨树政, 林恺. 动态球对称Einstein-Yang-Mills-Chern-Simons黑洞的霍金辐射.  , 2013, 62(6): 060401. doi: 10.7498/aps.62.060401
    [9] 魏来明, 周远明, 俞国林, 高矿红, 刘新智, 林铁, 郭少令, 戴宁, 褚君浩, Austing David Guy. 高迁移率InGaAs/InP量子阱中的有效g因子.  , 2012, 61(12): 127102. doi: 10.7498/aps.61.127102
    [10] 丁光涛. Whittaker方程的Hamilton化.  , 2010, 59(12): 8326-8329. doi: 10.7498/aps.59.8326
    [11] 吴慧婷, 王海龙, 姜黎明. 有效质量差异和电场对GaN/AlxGa1-xN球形量子点电子结构的影响.  , 2009, 58(1): 465-470. doi: 10.7498/aps.58.465
    [12] 余学才, 叶玉堂, 程 琳. 势阱中玻色-爱因斯坦凝聚气体的势场有效性和粒子数极限判据.  , 2006, 55(2): 551-554. doi: 10.7498/aps.55.551
    [13] 陆广成, 李增花, 左 维, 罗培燕. 热核物质中基态关联修正下的单核子势和核子有效质量.  , 2006, 55(1): 84-90. doi: 10.7498/aps.55.84
    [14] 段 鹤, 陈效双, 孙立忠, 周孝好, 陆 卫. 闪锌矿结构CdTe和ZnTe能带结构和有效质量的第一性原理计算.  , 2005, 54(11): 5293-5300. doi: 10.7498/aps.54.5293
    [15] 蔡长英, 任中洲, 鞠国兴. 指数型变化有效质量的三维Schr?dinger方程的解析解.  , 2005, 54(6): 2528-2533. doi: 10.7498/aps.54.2528
    [16] 王智河, 曹效文, 陈敬林, 李可斌. YBa2Cu3O7-δ外延薄膜的有效钉扎势.  , 1998, 47(10): 1720-1726. doi: 10.7498/aps.47.1720
    [17] 刘慕仁, 孔令江. 降低格子Boltzmann方程沾滞系数的有效方法.  , 1996, 45(3): 370-372. doi: 10.7498/aps.45.370
    [18] 郭志椿, 缪胜清, 易佑民. 吸附氦(4He)薄膜准二维运动的有效势近似.  , 1984, 33(6): 797-804. doi: 10.7498/aps.33.797
    [19] 陈宗蕴, 周义昌, 黄念宁. 关于标量量子电动力学有效势的泛函算法.  , 1982, 31(5): 660-663. doi: 10.7498/aps.31.660
    [20] 刘炳东, 何国柱. 用高能核子非弹性散射研究核力有效势.  , 1966, 22(5): 569-579. doi: 10.7498/aps.22.569
计量
  • 文章访问数:  7387
  • PDF下载量:  412
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-02
  • 修回日期:  2014-09-11
  • 刊出日期:  2015-02-05

/

返回文章
返回
Baidu
map