-
在考虑行人视野范围的随机偏走格子气模型基础上, 引入行人对前方开阔区域的移动偏好特性, 提出改进的格子气模型, 对通道内对向行人流进行仿真研究. 模型再现了对向行人流在不同密度下出现的3种演化过程, 发现了行人密度与对向行人流分层现象的形成具有随机性, 以及统计了概率的变化趋势, 同时分析了分层现象形成概率与系统几何尺寸参数、移动强度参数、右行人流比例参数和视野范围参数等的关系. 分析结果表明, 改进的模型能够再现实际低密度下对向行人流不会出现分层现象的特性. 根据分层形成的概率, 可将对向行人流的密度分为5个区间, 不同区间的行人流演化过程各有差异. 模型和分析结果对理解对向行人流的动态演化过程, 提高通道内对向行人流的走行效率有一定帮助.In this paper, we extend a lattice gas model recently proposed by Li et al, which considers the view field of pedestrian. An improved lattice gas model takes into account the effect of pedestrians' walking preference feature of empty area in the view field to simulate traffic dynamics of pedestrian counter flow. Three dynamic evolution processes under different pedestrian density are reproduced. The randomness of lane formation for different pedestrian density is found, and the probability of lane formation is given. Numerical simulations of relationship diagrams between the probability of lane formation and parameters of the system geometry size, the probability and the proportion of right walker flow, the probability and the strength of the drift, also the probability and the view field size are investigated. Results show that the extended model cannot form for the lane formation under a low pedestrian density, which is associated with the real pedestrian traffic. It is found that the density of pedestrian counter flow could be divided into 5 intervals, and there are differences in the dynamic evolution processes between these 5 intervals. This model and its result is useful for the study of the dynamic evolution process, and is helpful for raising efficiency of pedestrian counter flow in the channel.
-
Keywords:
- counter flow /
- lattice gas model /
- lane formation /
- probability
[1] Isobe M, Adachi T, Nagatani T 2004 Physica A 336 638
[2] Ge H X, Cheng R J, Lu Z M 2013 Chin. Phys. B 22 070507
[3] Xu L, Lu Z M, Ge H X 2013 Chin. Phys. B 22 120508
[4] Chen R, Li X, Dong L Y 2012 Acta Phys. Sin. 14 144502 (in Chinese) [陈然, 李翔, 董力耘 2012 14 144502]
[5] Lu L L, Ren G, Wang W, Wang Y 2014 Chin. Phys. B 23 088901
[6] Wang H N, Chen D, Pang W, Xue Y, He H D 2014 Chin. Phys. B 23 080505
[7] Yue H, Zhang B Y, Shao C F, Xing Y 2014 Chin. Phys. B 23 050512
[8] Helbing D, Molnar P 1995 Phys. Rev. E 51 4282
[9] Helbing D 2001 Rev. Mod. Phys. 73 1067
[10] Yu W, Johansson A 2007 Phys. Rev. E 76 046105
[11] Fang W F, Yang L Z, Fan W C 2003 Physica A 321 633
[12] Yang L Z, Li J, Liu S B 2008 Physica A 387 3281
[13] Weng W G, Chen T, Yuan H Y, Fan W C 2006 Phys. Rev. E 74 036102
[14] Beak S K, Minnhagen P, Bernharddsson S, Choi K, Kim B J 2009 Phys. Rev. E 80 016111
[15] Yu Y F, Song W G 2007 Phys. Rev. E 75 046112
[16] Yue H, Shao C F, Chen X M, Hao H R 2008 Acta Phys. Sin. 57 6901 (in Chinese) [岳昊, 邵春福, 陈晓明, 郝合端 2008 57 6901]
[17] Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487
[18] Takimoto K, Tajima Y, Nagatani T 2002 Physica A 308 460
[19] Yu Y F, Song W G 2007 Phys. Rev. E 76 026102
[20] Fukamachi M, Nagatani T 2007 Physica A 377 269
[21] Kuang H, Li X L, Song T, Dai S Q 2008 Phys. Rev. E 78 066117
[22] Kuang H, Li X L, Wei Y F, Song T, Dai S Q 2010 Chin. Phys. B 19 070517
[23] Ma J, Song W G, Liao G X 2010 Chin. Phys. B 19 128901
[24] Tajima Y, Takimoto K, Nagatani T 2002 Physica A 313 709
[25] Li X, Duan X Y, Dong L Y 2012 Chin. Phys. B 10 108901
[26] Ma J, Song W G, Zhang J, Lo S M, Liao G X 2010 Physica A 389 2101
[27] Ren G, Lu L L, Wang W 2012 Acta Phys. Sin. 61 144501 (in Chinese) [任刚, 陆丽丽, 王炜 2012 61 144501]
[28] Hoogendoorn S, Daamen W 2005 Traffic and Granular Flow'03 (Berlin: Springer) p373
[29] Helbing D, Buzna L, Johansson A, Werner T 2005 Transport. Sci. 39 1
-
[1] Isobe M, Adachi T, Nagatani T 2004 Physica A 336 638
[2] Ge H X, Cheng R J, Lu Z M 2013 Chin. Phys. B 22 070507
[3] Xu L, Lu Z M, Ge H X 2013 Chin. Phys. B 22 120508
[4] Chen R, Li X, Dong L Y 2012 Acta Phys. Sin. 14 144502 (in Chinese) [陈然, 李翔, 董力耘 2012 14 144502]
[5] Lu L L, Ren G, Wang W, Wang Y 2014 Chin. Phys. B 23 088901
[6] Wang H N, Chen D, Pang W, Xue Y, He H D 2014 Chin. Phys. B 23 080505
[7] Yue H, Zhang B Y, Shao C F, Xing Y 2014 Chin. Phys. B 23 050512
[8] Helbing D, Molnar P 1995 Phys. Rev. E 51 4282
[9] Helbing D 2001 Rev. Mod. Phys. 73 1067
[10] Yu W, Johansson A 2007 Phys. Rev. E 76 046105
[11] Fang W F, Yang L Z, Fan W C 2003 Physica A 321 633
[12] Yang L Z, Li J, Liu S B 2008 Physica A 387 3281
[13] Weng W G, Chen T, Yuan H Y, Fan W C 2006 Phys. Rev. E 74 036102
[14] Beak S K, Minnhagen P, Bernharddsson S, Choi K, Kim B J 2009 Phys. Rev. E 80 016111
[15] Yu Y F, Song W G 2007 Phys. Rev. E 75 046112
[16] Yue H, Shao C F, Chen X M, Hao H R 2008 Acta Phys. Sin. 57 6901 (in Chinese) [岳昊, 邵春福, 陈晓明, 郝合端 2008 57 6901]
[17] Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487
[18] Takimoto K, Tajima Y, Nagatani T 2002 Physica A 308 460
[19] Yu Y F, Song W G 2007 Phys. Rev. E 76 026102
[20] Fukamachi M, Nagatani T 2007 Physica A 377 269
[21] Kuang H, Li X L, Song T, Dai S Q 2008 Phys. Rev. E 78 066117
[22] Kuang H, Li X L, Wei Y F, Song T, Dai S Q 2010 Chin. Phys. B 19 070517
[23] Ma J, Song W G, Liao G X 2010 Chin. Phys. B 19 128901
[24] Tajima Y, Takimoto K, Nagatani T 2002 Physica A 313 709
[25] Li X, Duan X Y, Dong L Y 2012 Chin. Phys. B 10 108901
[26] Ma J, Song W G, Zhang J, Lo S M, Liao G X 2010 Physica A 389 2101
[27] Ren G, Lu L L, Wang W 2012 Acta Phys. Sin. 61 144501 (in Chinese) [任刚, 陆丽丽, 王炜 2012 61 144501]
[28] Hoogendoorn S, Daamen W 2005 Traffic and Granular Flow'03 (Berlin: Springer) p373
[29] Helbing D, Buzna L, Johansson A, Werner T 2005 Transport. Sci. 39 1
计量
- 文章访问数: 6168
- PDF下载量: 785
- 被引次数: 0