-
运用基于密度泛函理论的第一性原理方法, 系统研究了小尺寸锐钛矿相(n,0)型TiO2纳米管(D2分子的形成能降低, 体系趋于稳定; 在管径14 Å左右, (n,0)型TiO2纳米管会发生一次构型的转变. 能带分析显示, TiO2纳米管的电子态比较局域化, 小管径下(D2纳米管由直接带隙转变为间接带隙, 并且带隙值随着管径的增大而增大, 这是由于π轨道重叠效应的影响大于量子限域效应所导致的结果. 两种效应的竞争, 使得TiO2纳米管的介电函数虚部ε2 (ω)谱的峰值位置随管径增大既可能红移也可能蓝移, 管径大于9 Å (即(8, 0)管)之后, TiO2纳米管的光吸收会出现明显的增强.Using first-principles calculations based on the density functional theory, we systematically study the geometry structure, electronic structure and optical properties of the small size (n, 0)-type TiO2 nanotubes (D2 unit decreases with the diameter increasing, and the nanotubes become more stable. At a diameter of about 14 Å, a configuration change occurs. Band structure analysis shows that electronic states of TiO2 nanotubes are localized, and the conductivity is better for nanotubes with small diameters (D2 nanotubes shift from direct band gap to indirect band gap. And the band gap increases with diameter increasing, because π orbital overlap effect is greater than the quantum confinement effect. Owing to the competition between the two effects, the peaks of the dielectric function ε2(ω) will become redshifted or blueshifted. When its diameter is larger than 9 Å ((8, 0) tube), the optical absorption of TiO2 nanotubes will be significantly enhanced.
-
Keywords:
- TiO2 nanotubes /
- first-principles /
- electronic structure /
- optical properties
[1] Chen X, Mao S S 2007 Chem. Rev. 107 2891
[2] Ghicov A, Schmuki P 2009 Chem. Commun. 20 2791
[3] Devan R S, Patil R A, Lin J H, Ma Y R 2012 Adv. Funct. Mater. 22 3326
[4] Zheng Q, Zhou B X, Bai J, Li L H, Jin Z J, Zhang J L, Li J H, Liu Y B, Cai W M, Zhu X Y 2008 Adv. Mater. 20 1044
[5] Wang D A, Liu Y, Wang C W, Zhou F, Liu W M 2009 ACS Nano 3 1249
[6] Shao Z F, Yang Y Q, Liu S T, Wang Q 2014 Chin. Phys. B 23 096105
[7] Shankar K, Bandara J, Paulose M, Wietasch H, Varghese O K, Mor G K, LaTempa T J, Thelakkat M, Grimes C A 2008 Nano Lett. 8 1654
[8] Varghese O K, Paulose M, LaTempa T J, Grimes C A 2009 Nano Lett. 9 731
[9] Lin F, Li Z Y, Wang S Y 2009 Acta Phys. Sin. 58 8544 (in Chinese) [林峰, 李缵轶, 王山鹰 2009 58 8544]
[10] Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese) [张苑, 赵颖, 蔡宁, 熊绍珍 2008 57 5806]
[11] Wang Y Q, Hu G Q, Duan X F, Sun H L, Xue Q K 2002 Chem. Phys. Lett. 365 427
[12] Akita T, Okumura M, Tanaka K, Ohkuma K, Kohyama M, Koyanagi T, Date M, Tsubota S, Haruta M 2005 Surf. Interface Anal. 37 265
[13] Zhang S, Peng L M, Chen Q, Du G H, Dawson G, Zhou W Z 2003 Phys. Rev. Lett. 91 256103
[14] Afshar S, Hakamizadeh M 2009 J. Exp. Nanosci. 4 77
[15] Armstrong G, Armstrong A R, Canales J, Bruce P G 2005 Chem. Commun. 19 2454
[16] IvanovskayaV V, Enyashin A N, Ivanovskii A L 2003 Mendeleev Commun. 13 5
[17] Enyashin A N, Seifert G 2005 Phys. Status Solidi B 242 1361
[18] Wang J G, Wang J, Ma L, Zhao J J, Wang B L, Wang G H 2009 Physica E 41 838
[19] Liu Z J, Zhang Q, Qin L C 2007 Solid State Commun. 141 168
[20] Bandura A V, Evarestov R A 2009 Surf. Sci. 603 L117
[21] Evarestov R A, Bandura A V, Losev M V, Piskunov S, Zhukovskii Y F 2010 Physica E 43 266
[22] Hossain F M, Evteev A V, Belova I V, Nowotny J, Murch G E 2010 Comput. Mater. Sci. 48 854
[23] Ferrari A M, Szieberth D, Noel Y 2011 J. Mater. Chem. 21 4568
[24] Liu H, Lin M H, Tan K 2012 Acta Phys. Chim. Sin. 28 1843 (in Chinese) [刘昊, 林梦海, 谭凯 2012 物理化学学报 28 1843]
[25] Zhang H Y, Dong S L 2013 Chin. Phys. Lett. 30 043102
[26] Meng Q Q, Guan Z Y, Huang J, Li Q X, Yang J L 2014 Phys. Chem. Chem. Phys. 16 11519
[27] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
[28] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[29] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768
[31] Vanderbilt D 1990 Phys. Rev. B 41 7892
[32] Lin J S, Qteish A, Payne M C, Heine V 1993 Phys. Rev. B 47 4174
[33] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[34] Jones R O, Gunnarsson O 1989 Rev. Mod. Phys. 61 689
[35] Godby R W, Schluter M, Sham L J 1988 Phys. Rev. B 37 10159
[36] Wang C S, Klein B M 1981 Phys. Rev. B 24 3417
[37] Liu H 2010 Chin. Phys. B 19 057206
[38] Bavykin D V, Gordeev S N, Moskalenko A V, Lapkin A A, Walsh F C 2005 J. Phys. Chem. B 109 8565
[39] Zhang J K, Deng S H, Jin H, Liu Y L 2007 Acta Phys. Sin. 56 5371 (in Chinese) [张金奎, 邓胜华, 金慧, 刘悦林 2007 56 5371]
[40] Huang S P, Wu D S, Hu J M, Zhang H, Xie Z, Hu H, Cheng W D 2007 Opt. Express 15 10947
[41] Margulis V A, Gaiduk E A, Muryumin E E, Boyarkina O V, Fomina L V 2006 Phys. Rev. B 74 245419
[42] Liang W Z, Wang X J, Yokojima S, Chen G 2000 J. Am. Chem. Soc. 122 11129
[43] Pan H, Feng Y P, Lin J Y 2006 Phys. Rev. B 73 035420
-
[1] Chen X, Mao S S 2007 Chem. Rev. 107 2891
[2] Ghicov A, Schmuki P 2009 Chem. Commun. 20 2791
[3] Devan R S, Patil R A, Lin J H, Ma Y R 2012 Adv. Funct. Mater. 22 3326
[4] Zheng Q, Zhou B X, Bai J, Li L H, Jin Z J, Zhang J L, Li J H, Liu Y B, Cai W M, Zhu X Y 2008 Adv. Mater. 20 1044
[5] Wang D A, Liu Y, Wang C W, Zhou F, Liu W M 2009 ACS Nano 3 1249
[6] Shao Z F, Yang Y Q, Liu S T, Wang Q 2014 Chin. Phys. B 23 096105
[7] Shankar K, Bandara J, Paulose M, Wietasch H, Varghese O K, Mor G K, LaTempa T J, Thelakkat M, Grimes C A 2008 Nano Lett. 8 1654
[8] Varghese O K, Paulose M, LaTempa T J, Grimes C A 2009 Nano Lett. 9 731
[9] Lin F, Li Z Y, Wang S Y 2009 Acta Phys. Sin. 58 8544 (in Chinese) [林峰, 李缵轶, 王山鹰 2009 58 8544]
[10] Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese) [张苑, 赵颖, 蔡宁, 熊绍珍 2008 57 5806]
[11] Wang Y Q, Hu G Q, Duan X F, Sun H L, Xue Q K 2002 Chem. Phys. Lett. 365 427
[12] Akita T, Okumura M, Tanaka K, Ohkuma K, Kohyama M, Koyanagi T, Date M, Tsubota S, Haruta M 2005 Surf. Interface Anal. 37 265
[13] Zhang S, Peng L M, Chen Q, Du G H, Dawson G, Zhou W Z 2003 Phys. Rev. Lett. 91 256103
[14] Afshar S, Hakamizadeh M 2009 J. Exp. Nanosci. 4 77
[15] Armstrong G, Armstrong A R, Canales J, Bruce P G 2005 Chem. Commun. 19 2454
[16] IvanovskayaV V, Enyashin A N, Ivanovskii A L 2003 Mendeleev Commun. 13 5
[17] Enyashin A N, Seifert G 2005 Phys. Status Solidi B 242 1361
[18] Wang J G, Wang J, Ma L, Zhao J J, Wang B L, Wang G H 2009 Physica E 41 838
[19] Liu Z J, Zhang Q, Qin L C 2007 Solid State Commun. 141 168
[20] Bandura A V, Evarestov R A 2009 Surf. Sci. 603 L117
[21] Evarestov R A, Bandura A V, Losev M V, Piskunov S, Zhukovskii Y F 2010 Physica E 43 266
[22] Hossain F M, Evteev A V, Belova I V, Nowotny J, Murch G E 2010 Comput. Mater. Sci. 48 854
[23] Ferrari A M, Szieberth D, Noel Y 2011 J. Mater. Chem. 21 4568
[24] Liu H, Lin M H, Tan K 2012 Acta Phys. Chim. Sin. 28 1843 (in Chinese) [刘昊, 林梦海, 谭凯 2012 物理化学学报 28 1843]
[25] Zhang H Y, Dong S L 2013 Chin. Phys. Lett. 30 043102
[26] Meng Q Q, Guan Z Y, Huang J, Li Q X, Yang J L 2014 Phys. Chem. Chem. Phys. 16 11519
[27] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
[28] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[29] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768
[31] Vanderbilt D 1990 Phys. Rev. B 41 7892
[32] Lin J S, Qteish A, Payne M C, Heine V 1993 Phys. Rev. B 47 4174
[33] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[34] Jones R O, Gunnarsson O 1989 Rev. Mod. Phys. 61 689
[35] Godby R W, Schluter M, Sham L J 1988 Phys. Rev. B 37 10159
[36] Wang C S, Klein B M 1981 Phys. Rev. B 24 3417
[37] Liu H 2010 Chin. Phys. B 19 057206
[38] Bavykin D V, Gordeev S N, Moskalenko A V, Lapkin A A, Walsh F C 2005 J. Phys. Chem. B 109 8565
[39] Zhang J K, Deng S H, Jin H, Liu Y L 2007 Acta Phys. Sin. 56 5371 (in Chinese) [张金奎, 邓胜华, 金慧, 刘悦林 2007 56 5371]
[40] Huang S P, Wu D S, Hu J M, Zhang H, Xie Z, Hu H, Cheng W D 2007 Opt. Express 15 10947
[41] Margulis V A, Gaiduk E A, Muryumin E E, Boyarkina O V, Fomina L V 2006 Phys. Rev. B 74 245419
[42] Liang W Z, Wang X J, Yokojima S, Chen G 2000 J. Am. Chem. Soc. 122 11129
[43] Pan H, Feng Y P, Lin J Y 2006 Phys. Rev. B 73 035420
计量
- 文章访问数: 6526
- PDF下载量: 605
- 被引次数: 0