-
针对具有poly-Si1-xGex栅的应变SiGe p型金属氧化物半导体场效应晶体管(PMOSFET), 研究了其垂直电势与电场分布, 建立了考虑栅耗尽的poly-Si1-xGex栅情况下该器件的等效栅氧化层厚度模型, 并利用该模型分析了poly-Si1-xGex栅及应变SiGe层中Ge组分对等效氧化层厚度的影响. 研究了应变SiGe PMOSFET热载流子产生的机理及其对器件性能的影响, 以及引起应变SiGe PMOSFET阈值电压漂移的机理, 并建立了该器件阈值电压漂移模型, 揭示了器件阈值电压漂移随电应力施加时间、栅极电压、poly-Si1-xGex栅及应变SiGe层中Ge组分的变化关系. 并在此基础上进行了实验验证, 在电应力施加10000 s时, 阈值电压漂移0.032 V, 与模拟结果基本一致, 为应变SiGe PMOSFET及相关电路的设计与制造提供了重要的理论与实践基础.
-
关键词:
- 应变SiGep型金属氧化物半导体场效应晶体管 /
- poly-Si1-xGex栅 /
- 热载流子 /
- 阈值电压
In this work, the strained SiGe p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET) with poly-Si1-xGex gate has been studied. Based on the analysis of vertical electric field and potential distribution, the equipment oxide thickness of strained SiGe PMOSFET with poly Si1-xGex gate is established. The mechanism and the influence of hot carriers induced are studied. A model of the drift of threshold voltage is established; its relationships with the duration of the applied electrical stress, the voltage of gate, the Ge content of the poly Si1-xGex gate and the strained SiGe are also obtained. Based on the above results, the simulation results have been compared with the experimental data. The drift of threshold voltage is 0.032 V under 10000 s electrical stress. A good agreement is observed, which indicates the validation of our proposed model.-
Keywords:
- strained SiGe p-channel metal-oxide-semiconductor field-effect transistor /
- poly-Si1-xGex gate /
- hot carrier /
- threshold voltage
[1] Wang B, Zhang H M, Hu H Y, Zhang Y M, Shu B, Zhou C Y, Li Y C, L Y 2013 Acta Phys. Sin. 62 057103 (in Chinese) [王斌, 张鹤鸣, 胡辉勇, 张玉明, 舒斌, 周春宇, 李妤晨, 吕懿 2013 62 057103]
[2] Qu J T, Zhang H M, Wang G Y, Wang X Y, Hu H Y 2011 Acta Phys. Sin. 60 058502 (in Chinese) [屈江涛, 张鹤鸣, 王冠宇, 王晓艳, 胡辉勇 2011 60 058502]
[3] Yousif M Y A, Willander M, Lundgren P, Caymax M 2000 8th IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications Glasgow, UK, November 13-14, 2000 p271
[4] Nayfeh H M, Hoyt J L, Antoniadis D A 2004 IEEE Trans. Electron Dev. 51 2069
[5] Josse E, Skotnicki T 2001 Solid-State Device Research Conference Crolles, France, September 11-13, 2001 p207
[6] Hao Y, Liu H X 2008 The Feasibility and the Failure Mechanism of Micronano MOS Devices (Beijing: Science Press) pp256-257 (in Chinese) [郝跃, 刘红侠 2008 微纳米MOS器件可行性与失效机理 (北京: 科学出版社) 第256–257页]
[7] Liu Y L, Tan B H, Zhang K L 2004 Microelectronic Technology and Engineering (Beijing: Publishing House of electronics industry) pp286-287 (in Chinese) [刘玉岭, 檀柏海, 张楷亮 2004 微电子技术工程 (北京: 电子工业出版社) 第286–287 页]
[8] Pierret R F (translated by Huang R, Wang Q, Wang J Y) 2010 Fundamentals of Semiconductor Device (Beijing: Publishing House of Electronics Industry) pp475-477 (in Chinese) [皮埃洛 著 (黄如, 王漪, 王金延译)2010 半导体器件基础 (北京: 电子工业出版社) 第475–477页]
[9] Yue H, Sheng T, Wang Y 2001 IEEE Trans. Electron Dev. 48 2279
[10] Pan Y 1994 IEEE Trans. Electron Dev. 41 1639
[11] Liu E K, Zhu B S, Luo J S 2008 Semicondutor Physics (Beijing: Defense Industry Press) p366 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(北京: 国防工业出版社)第366页]
[12] Lee H, Vashaee D, Wang D Z, Dresselhaus M S, Ren Z F, Chen G 2010 J. Appl. Phys. 107 094308
[13] Xiao Q 2011 M. S. Thesis (Xian: Xidian University) (in Chinese) [肖庆 2011 硕士学位论文 (西安: 西安电子科技大学)]
[14] Cao Y R, Hao Y 2007 Chin. J. Semiconduct. 28 665
[15] Liu Y A, Du L, Bao J L 2008 Acta Phys. Sin. 57 2468 (in Chinese) [刘宇安, 杜磊, 包军林 2008 57 2468]
-
[1] Wang B, Zhang H M, Hu H Y, Zhang Y M, Shu B, Zhou C Y, Li Y C, L Y 2013 Acta Phys. Sin. 62 057103 (in Chinese) [王斌, 张鹤鸣, 胡辉勇, 张玉明, 舒斌, 周春宇, 李妤晨, 吕懿 2013 62 057103]
[2] Qu J T, Zhang H M, Wang G Y, Wang X Y, Hu H Y 2011 Acta Phys. Sin. 60 058502 (in Chinese) [屈江涛, 张鹤鸣, 王冠宇, 王晓艳, 胡辉勇 2011 60 058502]
[3] Yousif M Y A, Willander M, Lundgren P, Caymax M 2000 8th IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications Glasgow, UK, November 13-14, 2000 p271
[4] Nayfeh H M, Hoyt J L, Antoniadis D A 2004 IEEE Trans. Electron Dev. 51 2069
[5] Josse E, Skotnicki T 2001 Solid-State Device Research Conference Crolles, France, September 11-13, 2001 p207
[6] Hao Y, Liu H X 2008 The Feasibility and the Failure Mechanism of Micronano MOS Devices (Beijing: Science Press) pp256-257 (in Chinese) [郝跃, 刘红侠 2008 微纳米MOS器件可行性与失效机理 (北京: 科学出版社) 第256–257页]
[7] Liu Y L, Tan B H, Zhang K L 2004 Microelectronic Technology and Engineering (Beijing: Publishing House of electronics industry) pp286-287 (in Chinese) [刘玉岭, 檀柏海, 张楷亮 2004 微电子技术工程 (北京: 电子工业出版社) 第286–287 页]
[8] Pierret R F (translated by Huang R, Wang Q, Wang J Y) 2010 Fundamentals of Semiconductor Device (Beijing: Publishing House of Electronics Industry) pp475-477 (in Chinese) [皮埃洛 著 (黄如, 王漪, 王金延译)2010 半导体器件基础 (北京: 电子工业出版社) 第475–477页]
[9] Yue H, Sheng T, Wang Y 2001 IEEE Trans. Electron Dev. 48 2279
[10] Pan Y 1994 IEEE Trans. Electron Dev. 41 1639
[11] Liu E K, Zhu B S, Luo J S 2008 Semicondutor Physics (Beijing: Defense Industry Press) p366 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(北京: 国防工业出版社)第366页]
[12] Lee H, Vashaee D, Wang D Z, Dresselhaus M S, Ren Z F, Chen G 2010 J. Appl. Phys. 107 094308
[13] Xiao Q 2011 M. S. Thesis (Xian: Xidian University) (in Chinese) [肖庆 2011 硕士学位论文 (西安: 西安电子科技大学)]
[14] Cao Y R, Hao Y 2007 Chin. J. Semiconduct. 28 665
[15] Liu Y A, Du L, Bao J L 2008 Acta Phys. Sin. 57 2468 (in Chinese) [刘宇安, 杜磊, 包军林 2008 57 2468]
计量
- 文章访问数: 5941
- PDF下载量: 430
- 被引次数: 0