-
在B3LYP/6-311++G(d, p)水平上预测了Al2O3H3分子的较低能量构型. 其基态构型具有Cs对称性, 电子态为1A'. 通过研究Al2O3M3和M2 (M=H, D, T)的能量E、定容热容CV和熵S, 用电子振动近似讨论了Al2O3+3/2 M2→Al2O3M3反应的氢同位素效应,得到了Al2O3氢化的热力学函数△H0, △S0, △G0,及平衡压力与温度的关系. 研究表明, 氧化物Al2O3吸附氢(氘,氚)反应的同位素排代效应顺序为氚排代氘, 氘排代氢,与钛等金属的同位素排代顺序相反. 但排代效应都非常弱, 且随着温度的增加趋于消失.
-
关键词:
- Al2O3M3(M=H,D,T) /
- 热力学函数 /
- 同位素排代效应 /
- 吉布斯自由能改变
The lower energy structures of Al2O3H3 molecular clusters are optimized through DFT/B3LYP connected with 6-311g++(d, p) all electrons basis set. It is found that the ground state configuration of Al2O3H3 has 1A' electronic state and Cs symmetry. Based on the research on energy, heat capacity at constant volume, entropy of Al2O3M3 and M2 (M=H, D, T), the hydrogen isotope effects of reactions between Al2O3 and hydrogen (deuterium or tritium) gas are studied by means of the solid electron-vibration approximation. In addition, the changes of enthalpy, entropy and Gibbs free energy, and the relation between equilibrium pressures and temperatures are presented. The investigation suggests that hydrogen can be replaced by deuterium, and deuterium can be replaced by tritium in the reactions between Al2O3 and M2 with the productions of solid Al2O3M3 (M=H, D, T). This replacement sequence is opposite to the metallic isotope effect e. g. for titanium, however these replacement effects are very weak, and they are weaker and weaker as the temperature increases.-
Keywords:
- Al2O3M3 (M=H,D,T) molecular cluster /
- thermodynamic function /
- isotope displacement effect /
- change of Gibbs free energy
[1] Arcaro S, Cesconeto F R, Raupp-Pereira F, Novaes de Oliveira A P 2014 Ceram. Int. 40 5269
[2] Dudák M, Nováka V, Kočí P, Marek M, Blanco-Garcíab P, Jones G 2014 Appl. Catal. B: Environ. 150-151 446
[3] Estifaee P, Haghighi M, Mohammadi N, Rahmani F 2014 Ultra. Sono. Chem. 21 1155
[4] Nie Y L, Hu C, Li N N, Yang L, Qu J H 2014 Appl. Catal. B: Environ. 147 287
[5] Hong Y K, Lee D W, Eom H J, Lee K Y 2014 Appl. Catal. B: Environ. 150-151 438
[6] Chu Y Q, Zhang M H, Huo Z L, Liu M 2014 Chin. Phys. B 23 088501
[7] Yang Z, Yang J Z, Huang Y, Zhang K, Hao Y 2014 Chin. Phys. B 23 077305
[8] DeLuca L T, Galfetti L, Severini F, Rossettini L, Medab L, Marrab G, D'Andrea B, Weiser V, Calabro M, Vorozhtsov A B, Glazunov A A, Pavlovets G J 2007 Aero. Sci. Technol. 11 18
[9] Cobos C J 2002 J. Mol. Struc. 581 17
[10] Cai M, Carter C C, Miller T A, Bondydey V E 1991 J. Chem. Phys. 95 73
[11] Desai S R, Wu H, Rohlfing C M, Wang L S 1997 J. Chem. Phys. 106 1309
[12] Serebrennikov L V, Osin S B, Maltsev A A 1982 J. Mol. Struct. 81 25
[13] Sonchlk S M, Andrews L, Cartson K D 1983 J. Phys. Chem. 87 2004
[14] Andrews L, Burkholder T R, Yustein J T 1992 J. Phys. Chem. 96 10182
[15] Friedman R, MaCek A 1963 9th Symposium (International) on Combustion (Pittsburgh: Combustion Institute) p703
[16] Bucher P, Yetter R A, Dryer F L, Parr T P, Hanson-Parr D M, Vicenzi E P 1996 26th Symposium (International) on Combustion (Pittsburgh: Combustion Institute) p1899
[17] Zhu Z H, Liu Y C, Wang H Y, Jiang G, Tan M L, Wu R, Jiang G Q, Luo D L 1998 Chin. J. Atom. Mol. Phys. 15 435 (in Chinese) [朱正和, 刘幼成, 王红艳, 蒋刚, 谭明亮, 武胜, 蒋国强, 罗德礼 1998 原子分子 15 435]
[18] Zhu Z H, Sun Y, Zhong Z K, Zhang L, Wang H Y 2003 Chin. J. Atom. Mol. Phys. 20 525 (in Chinese) [朱正和, 孙颖, 钟正坤, 张莉, 王和义 2003 原子与分子 20 525]
[19] Chen X H, Zhu Z H, Gao T, Luo S Z 2006 Acta Phys. Sin. 55 3420 (in Chinese) [谌晓洪, 朱正和, 高涛, 罗顺忠 2006 55 3420]
[20] Chen X H, Gao T, Luo S Z, Ma M Z, Xie A D, Zhu Z H 2006 Acta Phys. Sin. 55 1113 (in Chinese) [谌晓洪, 高涛, 罗顺忠, 马美仲, 谢安东, 朱正和 2006 55 1113]
[21] Frisch M J, Trucks G W, Schlegel H B, Montgomery J A 2003 Gaussian 03 (Revision B. 03) (Wallingford: Gaussian Inc.)
-
[1] Arcaro S, Cesconeto F R, Raupp-Pereira F, Novaes de Oliveira A P 2014 Ceram. Int. 40 5269
[2] Dudák M, Nováka V, Kočí P, Marek M, Blanco-Garcíab P, Jones G 2014 Appl. Catal. B: Environ. 150-151 446
[3] Estifaee P, Haghighi M, Mohammadi N, Rahmani F 2014 Ultra. Sono. Chem. 21 1155
[4] Nie Y L, Hu C, Li N N, Yang L, Qu J H 2014 Appl. Catal. B: Environ. 147 287
[5] Hong Y K, Lee D W, Eom H J, Lee K Y 2014 Appl. Catal. B: Environ. 150-151 438
[6] Chu Y Q, Zhang M H, Huo Z L, Liu M 2014 Chin. Phys. B 23 088501
[7] Yang Z, Yang J Z, Huang Y, Zhang K, Hao Y 2014 Chin. Phys. B 23 077305
[8] DeLuca L T, Galfetti L, Severini F, Rossettini L, Medab L, Marrab G, D'Andrea B, Weiser V, Calabro M, Vorozhtsov A B, Glazunov A A, Pavlovets G J 2007 Aero. Sci. Technol. 11 18
[9] Cobos C J 2002 J. Mol. Struc. 581 17
[10] Cai M, Carter C C, Miller T A, Bondydey V E 1991 J. Chem. Phys. 95 73
[11] Desai S R, Wu H, Rohlfing C M, Wang L S 1997 J. Chem. Phys. 106 1309
[12] Serebrennikov L V, Osin S B, Maltsev A A 1982 J. Mol. Struct. 81 25
[13] Sonchlk S M, Andrews L, Cartson K D 1983 J. Phys. Chem. 87 2004
[14] Andrews L, Burkholder T R, Yustein J T 1992 J. Phys. Chem. 96 10182
[15] Friedman R, MaCek A 1963 9th Symposium (International) on Combustion (Pittsburgh: Combustion Institute) p703
[16] Bucher P, Yetter R A, Dryer F L, Parr T P, Hanson-Parr D M, Vicenzi E P 1996 26th Symposium (International) on Combustion (Pittsburgh: Combustion Institute) p1899
[17] Zhu Z H, Liu Y C, Wang H Y, Jiang G, Tan M L, Wu R, Jiang G Q, Luo D L 1998 Chin. J. Atom. Mol. Phys. 15 435 (in Chinese) [朱正和, 刘幼成, 王红艳, 蒋刚, 谭明亮, 武胜, 蒋国强, 罗德礼 1998 原子分子 15 435]
[18] Zhu Z H, Sun Y, Zhong Z K, Zhang L, Wang H Y 2003 Chin. J. Atom. Mol. Phys. 20 525 (in Chinese) [朱正和, 孙颖, 钟正坤, 张莉, 王和义 2003 原子与分子 20 525]
[19] Chen X H, Zhu Z H, Gao T, Luo S Z 2006 Acta Phys. Sin. 55 3420 (in Chinese) [谌晓洪, 朱正和, 高涛, 罗顺忠 2006 55 3420]
[20] Chen X H, Gao T, Luo S Z, Ma M Z, Xie A D, Zhu Z H 2006 Acta Phys. Sin. 55 1113 (in Chinese) [谌晓洪, 高涛, 罗顺忠, 马美仲, 谢安东, 朱正和 2006 55 1113]
[21] Frisch M J, Trucks G W, Schlegel H B, Montgomery J A 2003 Gaussian 03 (Revision B. 03) (Wallingford: Gaussian Inc.)
计量
- 文章访问数: 5369
- PDF下载量: 494
- 被引次数: 0