搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al2O3X2 (X= H, D, T)的电子振动近似方法

杨雷 谌晓洪 王玲 胡连瑞

引用本文:
Citation:

Al2O3X2 (X= H, D, T)的电子振动近似方法

杨雷, 谌晓洪, 王玲, 胡连瑞

Electron-vibration approximate method for hydrogen isotope compounds Al2O3X2 (X= H, D, T)

Yang Lei, Shen Xiao-Hong, Wang Ling, Hu Lian-Rui
PDF
导出引用
  • 用密度泛函理论在B3LYP/6-311++g (d, p)基组水平上对 Al2O3X2 (X= H, D, T)分子的可能较低能量构型进行了几何优化. 结果表明该分子的基态电子态和对称性为Al2O3X2 (X= H, D, T) (1A') Cs, 计算了氢同位素分子及Al2O3X2 (X= H, D, T)的电子能量E、 定容热容CV和熵S. 用电子振动近似方法计算了固体Al2O3的氢化热力学函数 H0, S0, G0 , 以及平衡压力与温度的关系. 当Al2O3吸附氢 (氘,氚)形成固体时, 反应的氢氘氚排代效应的顺序为氚排代氘, 氘排代氢, 与钛等金属与氢及其同位素反应的氢氘氚排代效应的顺序相反. 总体来说, 这种排代效应都非常弱. 随着温度的增加, 这系列反应的氢氘氚排代效应趋于消失.
    The geometric configurations, vibration frequencies and thermodynamics properties of Al2O3X2 (X= H, D, T) molecular clusters with lower energy are optimized using the B3LYP/6-311++g (d, p) method. The changes of entropy, enthalpy and Gibbs free energy of the reactions between Al2O3 and hydrogen (deuterium or tritium) gas are calculated by the solid electron-vibration approximate method and thermodynamic formulae at temperatures of 298, 398, 498, 598, 698, 798, 898, 998 and 1098 K, and then the relationships between the equilibrium pressure of hydrogen (deuterium or tritium) gas and temperature in these reactions are obtained. The results show that the ground state of the gaseous Al2O3H2 is Al2O3X2 (X= H, D, T) (1A') Cs. Hydrogen can be displaced by deuterium; deuterium can be displaced by tritium in the reactions between Al2O3 and X2 with the productions of solid Al2O3X2 which relates to ground gaseous Al2O3X2 with Cs symmetry. This displacement sequence is opposite to that in the reactions between titanium and X2. These displacement effects are very weak, and they are weaker and weaker as the temperature increases.
    • 基金项目: 四川省科技支撑计划(批准号: 2009PZ0055)和四川省教育厅重点项目(批准号: 10ZA105)资助的课题.
    • Funds: Project supported by the Science Supporting Plan of Sichuan Province, China (Grant No. 2009PZ0055) and the Major Project of Education Department in Sichan Province, China (Grant No. 10ZA105).
    [1]

    Linevsky M J, White D, Mann D E 1964 J. Chem. Phys. 41 542

    [2]

    Cai M, Carter C C, Miller T A, Bondydey V E 1991 J. Chem. Phys. 95 73

    [3]

    Desai S R, Wu H, Rohlfing C M, Wang L S 1997 J. Chem. Phys. 106 73

    [4]

    Serebrennikov L V, Osin S B, Maltsev A A 1982 J. Mol. Struct. 81 25

    [5]

    Sonchlk S M, Andrews L, Cartson K D 1983 J. Phys. Chem. 87 2004

    [6]

    Andrews L, Burkholder T R, Yustein J T 1992 J. Phys. Chem. 96 10182

    [7]

    Bucher P R, Yetter A, Dryer F L, Parr T P, Hanson-Parr D M, Vicenzi E P 1996 26th Symposium (International) on Combustion, Combustion Institute Pittsburg, PA p1899

    [8]

    Friedman R, MaCek A 1963 9th Symposium (International) on Combustion, Combustion Institute Pittsburgh, PA p703

    [9]

    Mao H P, Wang H Y, Ni Y, Xu G L, Ma M Z, Zhu Z H, Tang Y J 2004 Acta Phys. Sin. 53 1766 (in Chinese) [毛华平, 王红艳, 倪羽, 徐国亮, 马美仲, 朱正和, 唐永建 2004 53 1766]

    [10]

    Mao H P, Wang H Y, Tang Y J, Zhu Z H, Zheng S T 2004 Acta Phys. Sin. 53 37 (in Chinese) [毛华平, 王红艳, 唐永键, 朱正和, 郑少涛 2004 53 37]

    [11]

    Li X X, Jia T Q, Feng D H, Xu Z Z 2004 Acta Phys. Sin. 53 2154 (in Chinese) [李晓溪, 贾天卿, 冯东海, 徐至展 2004 53 2154]

    [12]

    Ma C L 2004 Acta Phys. Sin. 53 1952 (in Chinese) [马春兰 2004 53 1952 ]

    [13]

    Hu Z L 2002 Material for Stored Hydrogen (Beijing: Chemical Industry Press) (in Chinese) [胡子龙 2002 储氢材料 (北京: 化学工业出版社)]

    [14]

    Cobos C J 2002 J. Mol. Struc. 581 17

    [15]

    Vacek G, De Leeuw B J, Schaefer III H F 1993 J. Chem. Phys. 98 8704

    [16]

    Pilgrim J S, Robbins D L, Duncan M A 1993 Chem. Phys. Lett. 202 203

    [17]

    Zhu Z H, Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing: Science Press) (in Chinese) [朱正和, 俞华根 1997 分子结构与势能函数(北京: 科学出版社)]

    [18]

    Alexander O E 1977 Intermediate Quantum Theory of Crystalline Solids (Englewood Cliffs: Prentice-Hall Inc)

    [19]

    Herzberg G 1979 Molecular Spectra and Molecular Structure VI (Newyork: van Norstrand Reinhold Company)

    [20]

    Christopher J C 2002 Essentials of Computational Chemistry ( Chichester: John Wiley and Sons)

    [21]

    Zhu Z H, Liu Y C, Jiang G, Tan M L, Wu S, Jiang G Q, Luo D L 1998 Chin. J. Atomic and Molecular Physics 10 435 (in Chinese) [朱正和, 刘幼成, 蒋刚, 谭明亮, 武胜, 蒋国强, 罗德礼 1998 原子分子 10 435]

    [22]

    Zhu Z H, Sun Y, Zhong Z K, Zhang L, Wang H Y 2003 Chin. J. Atomic and Molecular Physics 20 525 (in Chinese) [朱正和, 孙颖, 钟正坤, 张莉, 王和义 2003 原子与分子 20 525]

    [23]

    Shen X H, Zhu Z H, Gao T, Luo S Z 2006 Acta Phys. Sin. 55 3420 (in Chinese) [谌晓洪, 朱正和, 高涛, 罗顺忠 2006 55 3420]

    [24]

    Shen X H, Gao T, Luo S Z, Ma M Z, Xie A D, Zhu Z H 2006 Acta Phys. Sin. 55 1113 (in Chinese) [谌晓洪, 高涛, 罗顺忠, 马美仲, 谢安东, 朱正和 2006 55 1113]

    [25]

    Gaussian 03, Revision B 03, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven Jr T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A, 2003 Gaussian, Inc., Pittsburgh PA

  • [1]

    Linevsky M J, White D, Mann D E 1964 J. Chem. Phys. 41 542

    [2]

    Cai M, Carter C C, Miller T A, Bondydey V E 1991 J. Chem. Phys. 95 73

    [3]

    Desai S R, Wu H, Rohlfing C M, Wang L S 1997 J. Chem. Phys. 106 73

    [4]

    Serebrennikov L V, Osin S B, Maltsev A A 1982 J. Mol. Struct. 81 25

    [5]

    Sonchlk S M, Andrews L, Cartson K D 1983 J. Phys. Chem. 87 2004

    [6]

    Andrews L, Burkholder T R, Yustein J T 1992 J. Phys. Chem. 96 10182

    [7]

    Bucher P R, Yetter A, Dryer F L, Parr T P, Hanson-Parr D M, Vicenzi E P 1996 26th Symposium (International) on Combustion, Combustion Institute Pittsburg, PA p1899

    [8]

    Friedman R, MaCek A 1963 9th Symposium (International) on Combustion, Combustion Institute Pittsburgh, PA p703

    [9]

    Mao H P, Wang H Y, Ni Y, Xu G L, Ma M Z, Zhu Z H, Tang Y J 2004 Acta Phys. Sin. 53 1766 (in Chinese) [毛华平, 王红艳, 倪羽, 徐国亮, 马美仲, 朱正和, 唐永建 2004 53 1766]

    [10]

    Mao H P, Wang H Y, Tang Y J, Zhu Z H, Zheng S T 2004 Acta Phys. Sin. 53 37 (in Chinese) [毛华平, 王红艳, 唐永键, 朱正和, 郑少涛 2004 53 37]

    [11]

    Li X X, Jia T Q, Feng D H, Xu Z Z 2004 Acta Phys. Sin. 53 2154 (in Chinese) [李晓溪, 贾天卿, 冯东海, 徐至展 2004 53 2154]

    [12]

    Ma C L 2004 Acta Phys. Sin. 53 1952 (in Chinese) [马春兰 2004 53 1952 ]

    [13]

    Hu Z L 2002 Material for Stored Hydrogen (Beijing: Chemical Industry Press) (in Chinese) [胡子龙 2002 储氢材料 (北京: 化学工业出版社)]

    [14]

    Cobos C J 2002 J. Mol. Struc. 581 17

    [15]

    Vacek G, De Leeuw B J, Schaefer III H F 1993 J. Chem. Phys. 98 8704

    [16]

    Pilgrim J S, Robbins D L, Duncan M A 1993 Chem. Phys. Lett. 202 203

    [17]

    Zhu Z H, Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing: Science Press) (in Chinese) [朱正和, 俞华根 1997 分子结构与势能函数(北京: 科学出版社)]

    [18]

    Alexander O E 1977 Intermediate Quantum Theory of Crystalline Solids (Englewood Cliffs: Prentice-Hall Inc)

    [19]

    Herzberg G 1979 Molecular Spectra and Molecular Structure VI (Newyork: van Norstrand Reinhold Company)

    [20]

    Christopher J C 2002 Essentials of Computational Chemistry ( Chichester: John Wiley and Sons)

    [21]

    Zhu Z H, Liu Y C, Jiang G, Tan M L, Wu S, Jiang G Q, Luo D L 1998 Chin. J. Atomic and Molecular Physics 10 435 (in Chinese) [朱正和, 刘幼成, 蒋刚, 谭明亮, 武胜, 蒋国强, 罗德礼 1998 原子分子 10 435]

    [22]

    Zhu Z H, Sun Y, Zhong Z K, Zhang L, Wang H Y 2003 Chin. J. Atomic and Molecular Physics 20 525 (in Chinese) [朱正和, 孙颖, 钟正坤, 张莉, 王和义 2003 原子与分子 20 525]

    [23]

    Shen X H, Zhu Z H, Gao T, Luo S Z 2006 Acta Phys. Sin. 55 3420 (in Chinese) [谌晓洪, 朱正和, 高涛, 罗顺忠 2006 55 3420]

    [24]

    Shen X H, Gao T, Luo S Z, Ma M Z, Xie A D, Zhu Z H 2006 Acta Phys. Sin. 55 1113 (in Chinese) [谌晓洪, 高涛, 罗顺忠, 马美仲, 谢安东, 朱正和 2006 55 1113]

    [25]

    Gaussian 03, Revision B 03, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven Jr T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A, 2003 Gaussian, Inc., Pittsburgh PA

  • [1] 邸淑红, 张阳, 杨会静, 崔乃忠, 李艳坤, 刘会媛, 李伶利, 石凤良, 贾玉璇. 铷簇同位素效应的量化研究.  , 2023, 72(18): 182101. doi: 10.7498/aps.72.20230778
    [2] 管韵, 王波波. 环面黑洞的热力学函数.  , 2022, (): . doi: 10.7498/aps.71.20212370
    [3] 管韵, 王波波. 环面黑洞的热力学函数.  , 2022, 71(11): 110401. doi: 10.7498/aps.70.20212370
    [4] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志. 同位素效应对H+NH→N+H2反应的立体动力学性质的影响.  , 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [5] 陈基, 冯页新, 李新征, 王恩哥. 基于路径积分分子动力学与热力学积分方法的高压氢自由能计算.  , 2015, 64(18): 183101. doi: 10.7498/aps.64.183101
    [6] 任桂明, 郑圆圆, 王丁, 王林, 谌晓洪, 王玲, 马敏, 刘华兵. 氢化氧化铝的同位素效应研究.  , 2014, 63(23): 233104. doi: 10.7498/aps.63.233104
    [7] 孙继忠, 张治海, 刘升光, 王德真. 载能氢同位素原子与石墨(001)面碰撞的分子动力学研究.  , 2012, 61(5): 055201. doi: 10.7498/aps.61.055201
    [8] 许燕, 赵娟, 王军, 刘芳, 孟庆田. 碰撞能和同位素取代对H+BrF→HBr+F反应立体动力学影响的理论研究.  , 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [9] 令狐荣锋, 徐梅, 王晓璐, 吕兵, 杨向东. Ne原子与H2分子碰撞的同位素替代效应研究.  , 2010, 59(4): 2416-2422. doi: 10.7498/aps.59.2416
    [10] 刘新国, 孙海竹, 刘会荣, 张庆刚. O++H2及其同位素取代反应的立体动力学研究.  , 2010, 59(11): 7796-7802. doi: 10.7498/aps.59.7796
    [11] 孔浩, 刘新国, 许文武, 梁景娟, 张庆刚. He+H+2及其同位素取代反应的立体动力学研究.  , 2009, 58(10): 6926-6931. doi: 10.7498/aps.58.6926
    [12] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. 不同能量的氦原子与同位素分子H2(D2,T2)碰撞分波截面的理论计算.  , 2008, 57(1): 155-159. doi: 10.7498/aps.57.155
    [13] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. 3He(4He)与H2分子碰撞的同位素效应研究.  , 2008, 57(6): 3452-3457. doi: 10.7498/aps.57.3452
    [14] 罗文浪, 阮 文, 张 莉, 谢安东, 朱正和. 氢同位素氚水T2O(X1A1)的解析势能函数.  , 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
    [15] 谌晓洪, 王 玲, 朱正和, 罗顺忠. Al2O3X(X=H, D, T)的电子振动近似理论方法研究.  , 2007, 56(8): 4467-4476. doi: 10.7498/aps.56.4467
    [16] 张 莉, 朱正和, 杨本福, 龙兴贵, 罗顺忠. 氢同位素化合物TiH2,TiD2和TiT2的电子振动近似理论方法.  , 2006, 55(10): 5418-5423. doi: 10.7498/aps.55.5418
    [17] 宋晓艳, 高金萍, 张久兴. 纳米多晶体的热力学函数及其在相变热力学中的应用.  , 2005, 54(3): 1313-1319. doi: 10.7498/aps.54.1313
    [18] 熊必涛, 蒙大桥, 薛卫东, 朱正和, 蒋 刚, 王红艳. 铀与水蒸气体系的热力学性质计算.  , 2003, 52(7): 1617-1623. doi: 10.7498/aps.52.1617
    [19] 薛卫东, 朱正和. CUO基态分子热力学稳定性研究.  , 2003, 52(12): 2965-2969. doi: 10.7498/aps.52.2965
    [20] 高 涛, 王红艳, 易有根, 谭明亮, 朱正和, 孙 颖, 汪小琳, 傅依备. PuO分子X5Σ-态的势能函数及热力学函数的量子力学计算.  , 1999, 48(12): 2222-2227. doi: 10.7498/aps.48.2222
计量
  • 文章访问数:  6302
  • PDF下载量:  309
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-02
  • 修回日期:  2012-05-20
  • 刊出日期:  2012-12-05

/

返回文章
返回
Baidu
map