-
动态应变时效, 即位错和溶质原子的动态交互作用, 对合金材料的力学性质产生重要影响. 本文基于蒙特卡罗方法, 建立了“多位错-溶质原子” 二维动力学模型, 分别模拟了单位错-恒定应力率、多位错-无应力、多位错-恒定应力和多位错-恒定应力率四种条件下位错和溶质原子的演化过程. 单位错-恒定应力率情况下, 低应力率时位错被溶质原子钉扎而无法脱钉, 高应力率时位错未被钉扎而一直运动, 只有在适当应力率范围内, 位错才呈现出反复的钉扎和脱钉; 多位错-无应力时, 溶质原子向正/负位错的下/上方偏聚; 多位错-恒定应力时, 位错运动受溶质原子钉扎的影响随应力增大而减小; 多位错-恒定应力率时, 集群化的钉扎和脱钉过程导致了位错总位移呈现阶梯状的演化. 模拟结果表明: “位错-溶质原子”尺度上呈现了动态应变时效微观过程, 与其理论描述相一致.Dynamic strain aging, i.e. the interaction between dislocations and solute atoms, affects the mechanical properties of alloys. In this paper, a 2D-kinetic Monte Carlo model relating to the interaction between dislocations and solute atoms is developed to simulate the motions of edge dislocations in four different conditions. In “single dislocation with constant stress rate” condition, single dislocation is pinned under low stress rate, moves continuously under high stress rate, and moves intermittently under middle stress rates. In “multi-dislocation with zero stress” condition, the solute atoms gather below positive dislocations and above negative dislocations. In “multi-dislocation with constant stress” condition, the influence of solute atoms on dislocation motion becomes stronger with stress decreasing. In “multi-dislocation with constant stress rate” condition, the collective pinning and unpinning result in the stepped curve of total displacement. The simulated results present the process of dynamic strain aging in a microscopic scale and are consistent with theoretical results.
-
Keywords:
- dynamic strain aging /
- kinetic model /
- dislocation motion
[1] Jiang H F, Zhang Q C, Xu Y H, Wu X P 2006 Acta Phys. Sin. 55 409 (in Chinese) [江慧丰, 张青川, 徐毅豪, 伍小平 2006 55 409]
[2] Peng K P, Chen W Z, Qian K W 2006 Acta Phys. Sin. 55 3569 (in Chinese) [彭开萍, 陈文哲, 钱匡武 2006 55 3569]
[3] Yuan F P, Jiang P, Wu X L 2011 Theor. Appl. Mech. Lett. 1 021002
[4] Cui C Y, Gu Y F, Yuan Y, Harada H 2011 Scripta Mater. 64 502
[5] Deschamps A, Decreus B, De Geuser F, Dorin T, Weyland M 2013 Acta Mater. 61 4010
[6] Mulford R A, Kocks U F 1979 Acta Metall. 27 1125
[7] McCormick P G 1988 Acta Metall. 36 3061
[8] Picu R C 2004 Acta Mater. 52 3447
[9] Curtin W A, Olmsted D L, Hector L G 2006 Nat. Mater. 5 875
[10] Hrutkay K, Kaoumi D 2014 Mater. Sci. Eng. A 599 196
[11] Sun L, Zhang Q C, Cao P T 2009 Chin. Phys. B 18 3500
[12] Cao P T, Zhang Q C, Xiao R, Xiong S M 2009 Acta Phys. Sin. 58 5591 (in Chinese) [曹鹏涛, 张青川, 肖锐, 熊少敏 2009 58 5591]
[13] Gao Y, Fu S H, Cai Y L, Cheng T, Zhang Q C 2014 Acta Phys. Sin. 63 066201 (in Chinese) [高越, 符师桦, 蔡玉龙, 程腾, 张青川 2014 63 066201]
[14] Han G M, Cui C Y, Gu Y F, Hu Z Q, Sun X F 2013 Acta Metall. Sin. 49 1243 (in Chinese) [韩国明, 崔传勇, 谷月峰, 胡壮麒, 孙晓峰 2013 金属学报 49 1243]
[15] Fu S H, Cheng T, Zhang Q C, Hu Q, Cao P T 2012 Acta Mater. 60 6650
[16] Hu Q, Zhang Q C, Fu S H, Cao P T, Gong M 2011 Theor. Appl. Mech. Lett. 1 011007
[17] Ananthakrishna G, Sahoo D 1982 J. Phys. D: Appl. Phys. 14 2081
[18] Kubin L P, Spiesser P, Estrin Y 1982 Acta Metall. 33 397
[19] Hahner P, Rizzi E 2003 Acta Mater. 51 3385
[20] Jiang H F, Zhang Q C, Chen X D, Chen Z J, Jiang Z Y, Wu X P, Fan J H 2007 Acta Mater. 55 2219
[21] Hu Q, Zhang Q C, Cao P T, Fu S H 2012 Acta Mater. 60 1647
[22] Zhu L L, Chen A Y, Lu J 2012 Theor. Appl. Mech. Lett. 2 021001
[23] Lebyodkin M, Dunin-Barkovskii L, Bréchet Y, Estrin Y, Kubin L P 2000 Acta Mater. 48 2529
[24] Wang Y, Srolovitz D J, Richman J M 2000 Acta Mater. 48 2163
[25] Kubin L P, Estrin Y 1990 Acta Metall. 38 697
-
[1] Jiang H F, Zhang Q C, Xu Y H, Wu X P 2006 Acta Phys. Sin. 55 409 (in Chinese) [江慧丰, 张青川, 徐毅豪, 伍小平 2006 55 409]
[2] Peng K P, Chen W Z, Qian K W 2006 Acta Phys. Sin. 55 3569 (in Chinese) [彭开萍, 陈文哲, 钱匡武 2006 55 3569]
[3] Yuan F P, Jiang P, Wu X L 2011 Theor. Appl. Mech. Lett. 1 021002
[4] Cui C Y, Gu Y F, Yuan Y, Harada H 2011 Scripta Mater. 64 502
[5] Deschamps A, Decreus B, De Geuser F, Dorin T, Weyland M 2013 Acta Mater. 61 4010
[6] Mulford R A, Kocks U F 1979 Acta Metall. 27 1125
[7] McCormick P G 1988 Acta Metall. 36 3061
[8] Picu R C 2004 Acta Mater. 52 3447
[9] Curtin W A, Olmsted D L, Hector L G 2006 Nat. Mater. 5 875
[10] Hrutkay K, Kaoumi D 2014 Mater. Sci. Eng. A 599 196
[11] Sun L, Zhang Q C, Cao P T 2009 Chin. Phys. B 18 3500
[12] Cao P T, Zhang Q C, Xiao R, Xiong S M 2009 Acta Phys. Sin. 58 5591 (in Chinese) [曹鹏涛, 张青川, 肖锐, 熊少敏 2009 58 5591]
[13] Gao Y, Fu S H, Cai Y L, Cheng T, Zhang Q C 2014 Acta Phys. Sin. 63 066201 (in Chinese) [高越, 符师桦, 蔡玉龙, 程腾, 张青川 2014 63 066201]
[14] Han G M, Cui C Y, Gu Y F, Hu Z Q, Sun X F 2013 Acta Metall. Sin. 49 1243 (in Chinese) [韩国明, 崔传勇, 谷月峰, 胡壮麒, 孙晓峰 2013 金属学报 49 1243]
[15] Fu S H, Cheng T, Zhang Q C, Hu Q, Cao P T 2012 Acta Mater. 60 6650
[16] Hu Q, Zhang Q C, Fu S H, Cao P T, Gong M 2011 Theor. Appl. Mech. Lett. 1 011007
[17] Ananthakrishna G, Sahoo D 1982 J. Phys. D: Appl. Phys. 14 2081
[18] Kubin L P, Spiesser P, Estrin Y 1982 Acta Metall. 33 397
[19] Hahner P, Rizzi E 2003 Acta Mater. 51 3385
[20] Jiang H F, Zhang Q C, Chen X D, Chen Z J, Jiang Z Y, Wu X P, Fan J H 2007 Acta Mater. 55 2219
[21] Hu Q, Zhang Q C, Cao P T, Fu S H 2012 Acta Mater. 60 1647
[22] Zhu L L, Chen A Y, Lu J 2012 Theor. Appl. Mech. Lett. 2 021001
[23] Lebyodkin M, Dunin-Barkovskii L, Bréchet Y, Estrin Y, Kubin L P 2000 Acta Mater. 48 2529
[24] Wang Y, Srolovitz D J, Richman J M 2000 Acta Mater. 48 2163
[25] Kubin L P, Estrin Y 1990 Acta Metall. 38 697
计量
- 文章访问数: 6540
- PDF下载量: 314
- 被引次数: 0