搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合锗量子点中空穴态对称特性研究

崔尉 王茺 崔灿 施张胜 杨宇

引用本文:
Citation:

耦合锗量子点中空穴态对称特性研究

崔尉, 王茺, 崔灿, 施张胜, 杨宇

Asymmetry of hole states in vertically coupled Ge double quantum dot

Cui Wei, Wang Chong, Cui Can, Shi Zhang-Sheng, Yang Yu
PDF
导出引用
  • 分别采用单带重空穴近似和六带Kronig-Penney模型, 对垂直耦合锗量子点在不同耦合距离下的空穴态特性进行了计算, 并探讨了自旋-轨道的相互作用对空穴态对称性的影响. 计算结果表明: 多带耦合的框架下, 随着量子点垂直间距的增大, 空穴基态从成键态转变为反键态, 而且价带基态能级和第一激发态能级发生反交叉现象, 这与单带模型下得到的相应结果存在较大差异. 通过分析六带模型计算得到的成、反键态波函数, 轻、重空穴态和自旋-轨道分裂态对特征空穴态波函数的贡献比例随着量子点垂直间距的增大发生了转变, 并最终导致量子点空穴基态波函数由成键态转变为反键态.
    The two lowest single-particle hole states in the vertically coupled Ge/Si double layer quantum dots are investigated numerically by using the single-band heavy hole effective mass approximation and six-band Kronig-Penney model, respectively. The calculated results indicate that within the frame of several-band coupled model, the bonding-antibonding ground-state transition and a bonding-antibonding energy anti-crossover phenomenon are observed with interdot distance increasing. These results have not been observed previously in those single-band model calculations. The analysis of the wavefunction component of bonding-antibonding hole state shows that the contribution ratios of light, heavy and spin-orbital-split-off hole states to the characteristic hole wavefunction vary with the increase of the vertical coupled distance, resulting in the ground state wavefunction changing from bonding states to antibonding ones finally.
    • 基金项目: 国家自然科学基金(批准号:10990103,11274266)、国家重点基础研究发展计划预研项目(批准号:2012CB326401)、云南省应用基础研究计划重点项目(批准号:2013FA029)和云南大学理工基金(批准号:2013CG024)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10990103, 11274266), the National Basic Research Program of China (Grant No. 2012CB326401), the Key Project of Applied Basic Research Program of Yunnan Province, China (Grant No. 2013FA029) and the Science and Technology Project of Yunnan University, China (Grant No. 2013CG024).
    [1]

    Liu W C, Guo B L, Wu X S, Zhang F M, Mak C L, Wong K H 2013 J. Mater. Chem. A 1 3182

    [2]

    Bimberg D, Grundmann M, Ledentsov N N 1999 Quantum Dot Heterostructures (Vol. 471973882) (Chichester: John Wiley) pp299-302

    [3]

    Coleman J J, Young J D, Garg A 2011 J. Lightwave Technol. 29 499

    [4]

    Hu Y, Kuemmeth F, Lieber C M, Marcus C M 2011 Nat. Nanotechnol. 7 47

    [5]

    Chen K H, Chien C Y, Li P W 2010 P Nanotechnology 21 055302

    [6]

    Cuadra L, Martí A, Luque A 2004 Thin Solid Films 451 593

    [7]

    Kechiantz A M, Kocharyan L M, Kechiyants H M 2007 Nanotechnology 18 405401

    [8]

    Luque A, Linares P G, Antolín E, Cánovas E, Farmer C D, Stanley C R, Martí A 2010 Appl. Phys. Lett. 96 013501

    [9]

    Luque A, Martí A, Stanley C 2012 Nat. Photon. 6 146

    [10]

    Melnik R V N, Willatzen M 2004 Nanotechnology 15 1

    [11]

    Shadi D 2012 M. S. Dissertation (Waterloo: University of Waterloo)

    [12]

    Yakimov A I, Bloshkin A A, Dvurechenskii A V 2008 Phys. Rev. B 78 165310

    [13]

    Yakimov A I, Bloshkin A A, Dvurechenskii A V 2009 Semicond. Sci. Technol. 24 095002

    [14]

    Yakimov A I, Bloshkin A A, Dvurechenskii A V 2010 Phys. Rev. B 81 115434

    [15]

    Tang N Y 2013 Acta Phys. Sin. 62 57301 (in Chinese) [汤乃云 2013 62 57301]

    [16]

    Planelles J, Climente J I, Rajadell F, Doty M F, Bracker A S, Gammon D 2010 Phys. Rev. B 82 155307

    [17]

    Zhang X G, Wang C, Lu Z Q, Yang J, Li L, Yang Y 2011 Acta Phys. Sin. 60 096101 (in Chinese) [张学贵, 王茺, 鲁植全, 杨杰, 李亮, 杨宇 2011 60 096101]

    [18]

    Yang J, Wang C, Jin Y X, Li L, Tao D P, Yang Y 2012 Acta Phys. Sin. 61 016804 (in Chinese) [杨杰, 王茺, 靳映霞, 李亮, 陶东平, 杨宇 2012 61 016804]

    [19]

    Wang H P, Ke S Y, Yang J, Wang C, Yang Y 2014 Acta Phys. Sin. 63 098104 (in Chinese) [王海澎, 柯少颖, 杨杰, 王茺, 杨宇 2014 63 098104]

    [20]

    Dai X Y, Yang C, Song J J, Zhang H M, Hao Y, Zheng R C 2012 Acta Phys. Sin. 61 137104 (in Chinese) [戴显英, 杨程, 宋建军, 张鹤鸣, 郝跃, 郑若川 2012 61 137104]

    [21]

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (Vol. 7) (Beijing: Electronics Industry Press) p385 (in Chinese) [刘恩科, 朱秉升, 罗晋生2011 半导体物理学 (北京: 电子工业出版社) 第385页]

    [22]

    Yuan F, Jiang Z, Lu F 2006 Appl. Phys. Lett. 89 072112

    [23]

    Li X, Xu W, Cao S, Cai Q, Lu F 2007 Phys. Rev. B 76 245304

    [24]

    Nenashev A V, Dvurechenskii A V, Zinovieva A F 2003 Phys. Rev. B 67 205301

    [25]

    Bir G L, Pikus G E 1974 Symmetry and Strain-Induced Effects in Semiconductors (Vol. 624) (New York: Wiley) pp32-54

    [26]

    Luttinger J M, Kohn W 1955 Phys. Rev. 97 869

  • [1]

    Liu W C, Guo B L, Wu X S, Zhang F M, Mak C L, Wong K H 2013 J. Mater. Chem. A 1 3182

    [2]

    Bimberg D, Grundmann M, Ledentsov N N 1999 Quantum Dot Heterostructures (Vol. 471973882) (Chichester: John Wiley) pp299-302

    [3]

    Coleman J J, Young J D, Garg A 2011 J. Lightwave Technol. 29 499

    [4]

    Hu Y, Kuemmeth F, Lieber C M, Marcus C M 2011 Nat. Nanotechnol. 7 47

    [5]

    Chen K H, Chien C Y, Li P W 2010 P Nanotechnology 21 055302

    [6]

    Cuadra L, Martí A, Luque A 2004 Thin Solid Films 451 593

    [7]

    Kechiantz A M, Kocharyan L M, Kechiyants H M 2007 Nanotechnology 18 405401

    [8]

    Luque A, Linares P G, Antolín E, Cánovas E, Farmer C D, Stanley C R, Martí A 2010 Appl. Phys. Lett. 96 013501

    [9]

    Luque A, Martí A, Stanley C 2012 Nat. Photon. 6 146

    [10]

    Melnik R V N, Willatzen M 2004 Nanotechnology 15 1

    [11]

    Shadi D 2012 M. S. Dissertation (Waterloo: University of Waterloo)

    [12]

    Yakimov A I, Bloshkin A A, Dvurechenskii A V 2008 Phys. Rev. B 78 165310

    [13]

    Yakimov A I, Bloshkin A A, Dvurechenskii A V 2009 Semicond. Sci. Technol. 24 095002

    [14]

    Yakimov A I, Bloshkin A A, Dvurechenskii A V 2010 Phys. Rev. B 81 115434

    [15]

    Tang N Y 2013 Acta Phys. Sin. 62 57301 (in Chinese) [汤乃云 2013 62 57301]

    [16]

    Planelles J, Climente J I, Rajadell F, Doty M F, Bracker A S, Gammon D 2010 Phys. Rev. B 82 155307

    [17]

    Zhang X G, Wang C, Lu Z Q, Yang J, Li L, Yang Y 2011 Acta Phys. Sin. 60 096101 (in Chinese) [张学贵, 王茺, 鲁植全, 杨杰, 李亮, 杨宇 2011 60 096101]

    [18]

    Yang J, Wang C, Jin Y X, Li L, Tao D P, Yang Y 2012 Acta Phys. Sin. 61 016804 (in Chinese) [杨杰, 王茺, 靳映霞, 李亮, 陶东平, 杨宇 2012 61 016804]

    [19]

    Wang H P, Ke S Y, Yang J, Wang C, Yang Y 2014 Acta Phys. Sin. 63 098104 (in Chinese) [王海澎, 柯少颖, 杨杰, 王茺, 杨宇 2014 63 098104]

    [20]

    Dai X Y, Yang C, Song J J, Zhang H M, Hao Y, Zheng R C 2012 Acta Phys. Sin. 61 137104 (in Chinese) [戴显英, 杨程, 宋建军, 张鹤鸣, 郝跃, 郑若川 2012 61 137104]

    [21]

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (Vol. 7) (Beijing: Electronics Industry Press) p385 (in Chinese) [刘恩科, 朱秉升, 罗晋生2011 半导体物理学 (北京: 电子工业出版社) 第385页]

    [22]

    Yuan F, Jiang Z, Lu F 2006 Appl. Phys. Lett. 89 072112

    [23]

    Li X, Xu W, Cao S, Cai Q, Lu F 2007 Phys. Rev. B 76 245304

    [24]

    Nenashev A V, Dvurechenskii A V, Zinovieva A F 2003 Phys. Rev. B 67 205301

    [25]

    Bir G L, Pikus G E 1974 Symmetry and Strain-Induced Effects in Semiconductors (Vol. 624) (New York: Wiley) pp32-54

    [26]

    Luttinger J M, Kohn W 1955 Phys. Rev. 97 869

  • [1] 周永香, 薛迅. 自旋-轨道耦合系统的电子涡旋.  , 2022, 71(21): 210301. doi: 10.7498/aps.71.20220751
    [2] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干.  , 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [3] 刘行, 徐帅, 高金柱, 何济洲. 基于三个耦合量子点的四端混合驱动制冷机.  , 2022, 71(19): 190502. doi: 10.7498/aps.71.20220904
    [4] 邵雅婷, 严凯, 吴银忠, 郝翔. 非对称自旋-轨道耦合系统的多体量子相干含时演化.  , 2021, 70(1): 010301. doi: 10.7498/aps.70.20201199
    [5] 施婷婷, 汪六九, 王璟琨, 张威. 自旋轨道耦合量子气体中的一些新进展.  , 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [6] 梁滔, 李铭. 自旋轨道耦合系统中的整数量子霍尔效应.  , 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [7] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构.  , 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [8] 黄珍, 曾文, 古艺, 刘利, 周鲁, 张卫平. 自旋-轨道耦合下冷原子的双反射.  , 2016, 65(16): 164201. doi: 10.7498/aps.65.164201
    [9] 罗质华. 双能态自旋-晶格声子耦合量子隧道系统的非经典能态和量子相干耗散.  , 2013, 62(20): 207201. doi: 10.7498/aps.62.207201
    [10] 汤乃云. 耦合量子点中空穴基态反键态特性研究.  , 2013, 62(5): 057301. doi: 10.7498/aps.62.057301
    [11] 张磊, 李辉武, 胡梁宾. 二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性的研究.  , 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [12] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质.  , 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [13] 吴丽君, 韩宇, 公卫江, 谭天亚. 量子点环嵌入Aharonov-Bohm干涉器中电子的退耦合态及反共振现象.  , 2011, 60(10): 107303. doi: 10.7498/aps.60.107303
    [14] 谌雄文, 谌宝菊, 施振刚, 宋克慧. 嵌入T型耦合双量子点介观A-B环系统的显著Fano 效应.  , 2009, 58(4): 2720-2725. doi: 10.7498/aps.58.2720
    [15] 谌雄文, 贺达江, 吴绍全, 宋克慧. 嵌入平行量子点的非平衡介观环路的极化电流.  , 2006, 55(8): 4287-4291. doi: 10.7498/aps.55.4287
    [16] 吴绍全, 谌雄文, 孙威 立, 王顺金. 嵌入耦合量子点的介观Aharonov-Bohm环内的持续电流.  , 2004, 53(7): 2336-2341. doi: 10.7498/aps.53.2336
    [17] 杨杰慧, 潘留占, 徐游. Ce∶YIG自旋轨道耦合对磁光效应的影响.  , 2000, 49(4): 807-810. doi: 10.7498/aps.49.807
    [18] 解文方, 陈传誉. 量子点电子态的尺寸效应和磁场的影响.  , 1998, 47(1): 102-106. doi: 10.7498/aps.47.102
    [19] 郭江民, 阮文英, 刘有延. 磁场下量子点的电子态.  , 1996, 45(5): 854-859. doi: 10.7498/aps.45.854
    [20] 储连元. 原子核内的自旋轨道耦合.  , 1958, 14(6): 469-478. doi: 10.7498/aps.14.469
计量
  • 文章访问数:  5758
  • PDF下载量:  620
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-29
  • 修回日期:  2014-07-25
  • 刊出日期:  2014-11-05

/

返回文章
返回
Baidu
map