搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K2分子在强激光场下的量子调控:缀饰态选择性分布

姚洪斌 李文亮 张季 彭敏

引用本文:
Citation:

K2分子在强激光场下的量子调控:缀饰态选择性分布

姚洪斌, 李文亮, 张季, 彭敏

Quantum control of K2 molecule in an intense laser field:Selective population of dressed states

Yao Hong-Bin, Li Wen-Liang, Zhang Ji, Peng Min
PDF
导出引用
  • 利用含时量子波包法理论研究了分子在强激光场条件下的量子调控. 选取K2分子的三态模型(基态|X、激发态|B和电离态|X+)作为研究对象. 在强激光场的作用下,激发态Bangle 缀饰成两个子态:|态和|态. 分析K2分子电离后的光电子能谱,可以得到缀饰态|和|的能量和概率分布信息. 同时,根据分子的缀饰态理论,提出了K2 分子的缀饰态选择性分布方案. 研究表明:调节激光场的强度可以实现对缀饰态能量的调控,改变激光场的波长可以实现对缀饰态概率的选择性分布.
    Control of molecular dynamics in an intense laser field has been studied by employing the time-dependent wave packet approach. A system of K2 molecule in three states (ground state|X, excited state |B and ionized state|X+) serves as a prototype which interacts with pump-probe laser fields. Interacting with an intense pump field, the excited state |B splits into two substates: | and |. Information of the energies and probability distributions of dresses states | and | can be obtained by analysing the photoelectron spectra (PES) of K2 molecule. Meanwhile, the scheme of selective population of dressed states (SPODS) has been put forward according to the dressed states theory of K2 molecule. It is found that regulating the laser intensity can control the dressed state energies, and altering the laser wavelength can make the high selectivity of the dressed state population readied.
    • 基金项目: 新疆维吾尔自治区高等学校科研计划项目(批准号:XJEDU2012S41)和新疆维吾尔自治区青年科技创新人才培养工程(批准号:2013731008)资助的课题.
    • Funds: Project supported by the Scientific Research Program of the Higher Education Institution of Xinjiang, China (Grant No.XJEDU2012S41), and the Youth Science and Technology Innovation Talents Project of Xinjiang, China(Grant No. 2013731008).
    [1]

    Shelby R, Smith D R, Schulrz S 2001 Science 292 77

    [2]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [3]
    [4]

    Patanjali V P, Wentao T L, Plarenta V, Srinivas S 2003 Nature 426 404

    [5]
    [6]
    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [9]
    [10]
    [11]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [12]
    [13]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett. 36 945

    [14]
    [15]

    He X J, Wang Y, Wang J M, Gui T L, Wu Q 2011 Prog. Electromagn. Res. 115 381

    [16]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2013 Appl. Opt. 52 4536

    [17]
    [18]

    Tao H, Binghan C M, Pilon D, Fan K B, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102

    [19]
    [20]
    [21]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [22]
    [23]

    Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [24]

    Chen Z, Zhang Y X 2013 Chin. Phys. B 22 067802

    [25]
    [26]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [27]
    [28]

    Hu F R, Wang L, Quan B G, Xu X L, Li Z, Wu Z A, Pan X C 2013 J. Phys. D: Appl. Phys. 46 195103

    [29]
    [30]
    [31]

    Dai Y H, Chen X L, Zhao Q, Zhang J H, Chen H W, Yang C R 2013 Acta Phys. Sin. 62 064101 (in Chinese)[戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁 2013 62 064101]

    [32]
    [33]

    Mo M M, Wen Q Y, Chen Z, Yang Q H, Li S, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 237801 (in Chinese)[莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武 2013 62 237801]

    [34]
    [35]

    He S L, Fellow, IEEE, Chen T 2013 IEEE Transactions on Terahertz Science and Technology 3 757

    [36]
    [37]

    Van Tuong Pham, Park J W, Dinh Lam Vu, Zheng H Y, Rhee J Y, Kim K W, Lee Y P 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol 4 015001

    [38]
    [39]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476

    [40]
    [41]

    Ye Y Q, Jin Y, He S L 2010 Journal of the Optical Society of America B 27 498

    [42]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photon. Technol. Lett. 26 111

    [43]
    [44]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [45]
    [46]
    [47]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2013 Eur. Phys. J. B 86 304

    [48]
    [49]

    Cheng Y Z, Nie Y, Gong R Z 2013 Optics {m Laser Technology 48 415

    [50]
    [51]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2014 Opt. Lett. 39 1589

    [52]
    [53]

    Zhang D N, Wen Q Y, Xie Y S 2011 Chin. Opt. Lett. 9 S10402

    [54]

    Liu P, Jiang J J, Chen Q, Xu X X, Miao L 2011 Electronic Components and Materials 30 56 (in Chinese)[刘鹏, 江建军, 陈谦, 徐欣欣, 缪灵 2011 电子元件与材料 30 56]

    [55]
  • [1]

    Shelby R, Smith D R, Schulrz S 2001 Science 292 77

    [2]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [3]
    [4]

    Patanjali V P, Wentao T L, Plarenta V, Srinivas S 2003 Nature 426 404

    [5]
    [6]
    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [9]
    [10]
    [11]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [12]
    [13]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett. 36 945

    [14]
    [15]

    He X J, Wang Y, Wang J M, Gui T L, Wu Q 2011 Prog. Electromagn. Res. 115 381

    [16]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2013 Appl. Opt. 52 4536

    [17]
    [18]

    Tao H, Binghan C M, Pilon D, Fan K B, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102

    [19]
    [20]
    [21]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [22]
    [23]

    Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [24]

    Chen Z, Zhang Y X 2013 Chin. Phys. B 22 067802

    [25]
    [26]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [27]
    [28]

    Hu F R, Wang L, Quan B G, Xu X L, Li Z, Wu Z A, Pan X C 2013 J. Phys. D: Appl. Phys. 46 195103

    [29]
    [30]
    [31]

    Dai Y H, Chen X L, Zhao Q, Zhang J H, Chen H W, Yang C R 2013 Acta Phys. Sin. 62 064101 (in Chinese)[戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁 2013 62 064101]

    [32]
    [33]

    Mo M M, Wen Q Y, Chen Z, Yang Q H, Li S, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 237801 (in Chinese)[莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武 2013 62 237801]

    [34]
    [35]

    He S L, Fellow, IEEE, Chen T 2013 IEEE Transactions on Terahertz Science and Technology 3 757

    [36]
    [37]

    Van Tuong Pham, Park J W, Dinh Lam Vu, Zheng H Y, Rhee J Y, Kim K W, Lee Y P 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol 4 015001

    [38]
    [39]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476

    [40]
    [41]

    Ye Y Q, Jin Y, He S L 2010 Journal of the Optical Society of America B 27 498

    [42]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photon. Technol. Lett. 26 111

    [43]
    [44]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [45]
    [46]
    [47]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2013 Eur. Phys. J. B 86 304

    [48]
    [49]

    Cheng Y Z, Nie Y, Gong R Z 2013 Optics {m Laser Technology 48 415

    [50]
    [51]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2014 Opt. Lett. 39 1589

    [52]
    [53]

    Zhang D N, Wen Q Y, Xie Y S 2011 Chin. Opt. Lett. 9 S10402

    [54]

    Liu P, Jiang J J, Chen Q, Xu X X, Miao L 2011 Electronic Components and Materials 30 56 (in Chinese)[刘鹏, 江建军, 陈谦, 徐欣欣, 缪灵 2011 电子元件与材料 30 56]

    [55]
  • [1] 邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜. 机器学习在光电子能谱中的应用及展望.  , 2024, 73(21): 210701. doi: 10.7498/aps.73.20240957
    [2] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收.  , 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [3] 何鑫, 李鑫焱, 李景辉, 张振华. Fe原子吸附的锑烯/WS2异质结的磁电子性质及调控效应.  , 2022, 71(21): 218503. doi: 10.7498/aps.71.20220949
    [4] 王丹, 郭瑞翔, 戴玉鹏, 周海涛. 基于简并四波混频的双信道双频段增益谱.  , 2021, 70(10): 104204. doi: 10.7498/aps.70.20201778
    [5] 姚洪斌, 蒋相站, 曹长虹, 李文亮. HD+分子的强场光解离动力学及其量子调控的理论研究.  , 2019, 68(17): 178201. doi: 10.7498/aps.68.20190400
    [6] 张斯淇, 陆景彬, 刘晓静, 刘继平, 李宏, 梁禺, 张晓茹, 刘晗, 吴向尧, 郭义庆. 运用理想光子禁带模型实现对激发态原子系统演化的调控.  , 2018, 67(9): 094205. doi: 10.7498/aps.67.20172050
    [7] 王文彬, 朱银燕, 殷立峰, 沈健. 复杂氧化物中电子相分离的量子调控.  , 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [8] 张蕾, 戈燕, 张向阳. 基于量子相干控制吸收的准Λ型四能级原子局域化研究.  , 2015, 64(13): 134204. doi: 10.7498/aps.64.134204
    [9] 杨增强, 张力达. 红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究.  , 2015, 64(13): 133203. doi: 10.7498/aps.64.133203
    [10] 冯小静, 郭玮, 路兴强, 姚洪斌, 李月华. 三态K2分子飞秒含时光电子能谱的理论研究.  , 2015, 64(14): 143303. doi: 10.7498/aps.64.143303
    [11] 姚洪斌, 张季, 彭敏, 李文亮. H2+在强激光场中的解离及其量子调控的理论研究.  , 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [12] 张敏, 唐田田, 张朝民. NaLi分子飞秒含时光电子能谱的理论研究.  , 2014, 63(2): 023302. doi: 10.7498/aps.63.023302
    [13] 孙江, 孙娟, 王颖, 苏红新, 曹谨丰. 中间态引入量子干涉的三光子共振非简并六波混频.  , 2012, 61(11): 114213. doi: 10.7498/aps.61.114213
    [14] 黄仙山, 刘海莲, 羊亚平, 石云龙. 运用动态Lorentz库实现对激发态原子动力学特性的调控.  , 2011, 60(2): 024205. doi: 10.7498/aps.60.024205
    [15] 吴海飞, 张寒洁, 廖清, 陆赟豪, 斯剑霄, 李海洋, 鲍世宁, 吴惠祯, 何丕模. Mn/PbTe(111)界面行为的光电子能谱研究.  , 2009, 58(2): 1310-1315. doi: 10.7498/aps.58.1310
    [16] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认.  , 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [17] 葛愉成. 用光电子能谱相位确定法同时测量阿秒超紫外线XUV脉冲的频率和强度时间分布.  , 2005, 54(6): 2653-2661. doi: 10.7498/aps.54.2653
    [18] 贾文红, 武海顺. GamPn和GamP-n团簇结构及其光电子能谱的理论研究.  , 2004, 53(4): 1056-1062. doi: 10.7498/aps.53.1056
    [19] 崔大复, 王焕华, 戴守愚, 周岳亮, 陈正豪, 杨国桢, 刘凤琴, 奎热西, 钱海杰. Sb掺杂SrTio3透明导电薄膜的光电子能谱研究.  , 2002, 51(1): 187-191. doi: 10.7498/aps.51.187
    [20] 吕斌, 吕萍, 施申蕾, 张建华, 唐建新, 楼辉, 何丕模, 鲍世宁. OPCOT在Ru(0001)表面上的紫外光电子能谱研究.  , 2002, 51(11): 2644-2648. doi: 10.7498/aps.51.2644
计量
  • 文章访问数:  6163
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-20
  • 修回日期:  2014-05-09
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map