搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面电子转移对量子点荧光闪烁行为的影响

吴建芳 张国峰 陈瑞云 秦成兵 肖连团 贾锁堂

引用本文:
Citation:

界面电子转移对量子点荧光闪烁行为的影响

吴建芳, 张国峰, 陈瑞云, 秦成兵, 肖连团, 贾锁堂

Influence of interfacial electron transfer on fluorescence blinking of quantum dots

Wu Jian-Fang, Zhang Guo-Feng, Chen Rui-Yun, Qin Cheng-Bin, Xiao Lian-Tuan, Jia Suo-Tang
PDF
导出引用
  • 利用激光扫描共聚焦显微系统分别测量了CdSe/ZnS量子点在SiO2玻片表面、铟锡氧化物(ITO)纳米粒子表面和聚甲基丙烯酸甲酯(PMMA)薄膜表面上的荧光闪烁行为. 研究发现,不同界面环境中量子点的亮态发光持续时间的概率密度都服从指数修正的幂律分布P(t)∝ t-αexp(-t/μ). 与处于SiO2 玻片表面的情况相比,在ITO表面上的单量子点具有非常短暂的亮态发光持续时间,而在PMMA表面的单量子点亮态发光持续时间最长. 这种荧光闪烁行为的不同主要归因于量子点与三种材料之间的界面电子转移特性.
    The fluorescence blinking characteristics of the single CdSe/ZnS core/shell quantum dots (QDs) absorbed on the cover glass surface, indium-tin oxide (ITO) nanoparticles, and polymethyl methacrylate (PMMA) film surface are measured by a laser scanning confocal fluorescence microscopy. It is found that all the distributions of bright state duration time of QDs on the three different interfaces can be described by a truncated power law P(t)∝ t-αexp(-t/μ). The statistical on-time durations of single QDs absorbed on the ITO nanoparticles is shorter than on the glass. In addition, the on-time duration with single QDs absorbed on the PMMA is longer than on the others. These differences can be attributed to the diverse interfacial electron transfers between QD and different materials.
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB921603,2010CB923103)、国家高技术研究发展计划(批准号:2011AA010801)、国家自然科学基金(批准号:11374196,11174187,10934004,11204166)、科学技术部国际科技合作计划(批准号:2001DFA12490)、国家自然科学基金创新研究群体科学基金(批准号:61121064)、教育部长江学者和创新团队发展计划(批准号:IRT13076)和高等学校博士学科点专项科研基金(批准号:20121401120016)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2012CB921603, 2010CB923103), the National High Technology Research and Development Program of China (Grant No. 2011AA010801), the National Natural Science Foundation of China (Grant Nos. 11374196, 11174187, 10934004, 11204166), the International Science and Technology Cooperation Program of Ministry of Science and Technology, China (Grant No. 2001DFA12490), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 61121064), the Cheung Kong Scholars and Innovative Research Team Program in University of Ministry of Education, China (Grant No. IRT13076), and the Specialized Research Foundation for the Doctoral Program of Institution of Higher Education of China (Grant No. 20121401120016).
    [1]

    Medintz I L, Uyeda H T, Goldman E R, Mattoussi H 2005 Nat. Mater. 4 435

    [2]

    Moreau E, Robert I, Gérard J M, Abram I, Manin L, Thierry-Mieg V 2001 Appl. Phys. Lett. 79 2865

    [3]

    Ropp C, Cummins Z, Nah S, Fourkas J T, Shapiro B, Waks E 2013 Nat. Commun. 4 1447

    [4]

    Colvin V L, Schlamp M C, Alivisatos A P 1994 Nature 370 354

    [5]

    Bae W K, Park Y S, Lim J, Lee D, Padilha L A, McDaniel H, Robel I, Lee C H, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2661

    [6]

    Liu B Z, Li R F, Song L Y, Hu L, Zhang B P, Chen Y Y, Wu J Z, Bi G, Wang M, Wu H Z 2013 Acta Phys. Sin. 62 158504 (in Chinese) [刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢 2013 62 158504]

    [7]

    Li X K, Liang D C, Jin P, An Q, Wei H, Wu J, Wang Z G 2012 Chin. Phys. B 21 028102

    [8]

    Samadpour M, Iraji zad A, Molaei M 2014 Chin. Phys. B 23 047302

    [9]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [10]

    Jiang B Y, Zheng J B, Wang C F, Hao J, Cao C D 2012 Acta Phys. Sin. 61 138801 (in Chinese) [姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德 2012 61 138801]

    [11]

    Han R C, Li Z H, Fan Y Y, Jiang Y Q 2013 J. Genet. Genomics. 40 583

    [12]

    Issac A, Jin S Y, Lian T Q 2008 J. Am. Chem. Soc. 130 11280

    [13]

    Jin S Y, Lian T Q 2009 Nano Lett. 9 2448

    [14]

    Krauss T D, O'Brien S, Brus L E 2001 J. Phys. Chem. B 105 1725

    [15]

    Wang S Y, Querner C, Emmons T, Drndic M, Crouch C H 2006 J. Phys. Chem. B 110 23221

    [16]

    Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2000 J. Chem. Phys. 112 3117

    [17]

    Shimizu K T, Neuhauser R G, Leatherdale C A, Empedocles S A, Woo W K, Bawendi M G 2001 Phys. Rev. B 63 205316

    [18]

    Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2001 J. Chem. Phys. 115 1028

    [19]

    Mller J, Lupton J M, Rogach A L, Feldmann J, Talapin D V, Weller H 2004 Appl. Phys. Lett. 85 381

    [20]

    Bharadwaj P, Novotny L 2011 Nano Lett. 11 2137

    [21]

    Jin S Y, Song N H, Lian T Q 2010 ACS Nano 4 1545

    [22]

    Jin S Y, Hsiang J C, Zhu H M, Song N H, Dickson R M, Lian T Q 2010 Chem. Sci. 1 519

    [23]

    Issac A, von Borczyskowski C, Cichos F 2005 Phys. Rev. B 71 161302

    [24]

    Chowdry A, Westgate C 1974 J. Phys. D: Appl. Phys. 7 713

    [25]

    Verberk R, van Oijen A M, Orrit M 2002 Phys. Rev. B 66 233202

  • [1]

    Medintz I L, Uyeda H T, Goldman E R, Mattoussi H 2005 Nat. Mater. 4 435

    [2]

    Moreau E, Robert I, Gérard J M, Abram I, Manin L, Thierry-Mieg V 2001 Appl. Phys. Lett. 79 2865

    [3]

    Ropp C, Cummins Z, Nah S, Fourkas J T, Shapiro B, Waks E 2013 Nat. Commun. 4 1447

    [4]

    Colvin V L, Schlamp M C, Alivisatos A P 1994 Nature 370 354

    [5]

    Bae W K, Park Y S, Lim J, Lee D, Padilha L A, McDaniel H, Robel I, Lee C H, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2661

    [6]

    Liu B Z, Li R F, Song L Y, Hu L, Zhang B P, Chen Y Y, Wu J Z, Bi G, Wang M, Wu H Z 2013 Acta Phys. Sin. 62 158504 (in Chinese) [刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢 2013 62 158504]

    [7]

    Li X K, Liang D C, Jin P, An Q, Wei H, Wu J, Wang Z G 2012 Chin. Phys. B 21 028102

    [8]

    Samadpour M, Iraji zad A, Molaei M 2014 Chin. Phys. B 23 047302

    [9]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [10]

    Jiang B Y, Zheng J B, Wang C F, Hao J, Cao C D 2012 Acta Phys. Sin. 61 138801 (in Chinese) [姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德 2012 61 138801]

    [11]

    Han R C, Li Z H, Fan Y Y, Jiang Y Q 2013 J. Genet. Genomics. 40 583

    [12]

    Issac A, Jin S Y, Lian T Q 2008 J. Am. Chem. Soc. 130 11280

    [13]

    Jin S Y, Lian T Q 2009 Nano Lett. 9 2448

    [14]

    Krauss T D, O'Brien S, Brus L E 2001 J. Phys. Chem. B 105 1725

    [15]

    Wang S Y, Querner C, Emmons T, Drndic M, Crouch C H 2006 J. Phys. Chem. B 110 23221

    [16]

    Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2000 J. Chem. Phys. 112 3117

    [17]

    Shimizu K T, Neuhauser R G, Leatherdale C A, Empedocles S A, Woo W K, Bawendi M G 2001 Phys. Rev. B 63 205316

    [18]

    Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2001 J. Chem. Phys. 115 1028

    [19]

    Mller J, Lupton J M, Rogach A L, Feldmann J, Talapin D V, Weller H 2004 Appl. Phys. Lett. 85 381

    [20]

    Bharadwaj P, Novotny L 2011 Nano Lett. 11 2137

    [21]

    Jin S Y, Song N H, Lian T Q 2010 ACS Nano 4 1545

    [22]

    Jin S Y, Hsiang J C, Zhu H M, Song N H, Dickson R M, Lian T Q 2010 Chem. Sci. 1 519

    [23]

    Issac A, von Borczyskowski C, Cichos F 2005 Phys. Rev. B 71 161302

    [24]

    Chowdry A, Westgate C 1974 J. Phys. D: Appl. Phys. 7 713

    [25]

    Verberk R, van Oijen A M, Orrit M 2002 Phys. Rev. B 66 233202

  • [1] 李斌, 苗向阳. 单个CsPbBr3钙钛矿量子点的荧光闪烁特性.  , 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [2] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机.  , 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [3] 周亮亮, 吴宏博, 李学铭, 唐利斌, 郭伟, 梁晶. ZrS2量子点: 制备、结构及光学特性.  , 2019, 68(14): 148501. doi: 10.7498/aps.68.20190680
    [4] 张强强, 胡建勇, 景明勇, 李斌, 秦成兵, 李耀, 肖连团, 贾锁堂. 单光子调制频谱用于量子点荧光寿命动力学的研究.  , 2019, 68(1): 017803. doi: 10.7498/aps.68.20181797
    [5] 赵瑞通, 梁瑞生, 王发强. 电子自旋辅助实现光子偏振态的量子纠缠浓缩.  , 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [6] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响.  , 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [7] 王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂. 利用N型半导体纳米材料抑制单量子点的荧光闪烁特性.  , 2015, 64(24): 247803. doi: 10.7498/aps.64.247803
    [8] 刘志民, 赵谡玲, 徐征, 高松, 杨一帆. 红光量子点掺杂PVK体系的发光特性研究.  , 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [9] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究.  , 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [10] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控.  , 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [11] 刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢. 氧化锌锡作为电子传输层的量子点发光二极管.  , 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [12] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究.  , 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [13] 琚鑫, 郭健宏. 点间耦合强度对三耦合量子点系统微分电导的影响.  , 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [14] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性.  , 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [15] 尹辑文, 肖景林, 于毅夫, 王子武. 库仑势对抛物量子点量子比特消相干的影响.  , 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [16] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布.  , 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [17] 邓宇翔, 颜晓红, 唐娜斯. 量子点环的电子输运研究.  , 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [18] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构.  , 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [19] 王防震, 陈张海, 柳 毅, 黄少华, 柏利慧, 沈学础. CdSe/ZnSe超薄层中两类量子岛(点)之间的激子转移和它们的光学性质研究.  , 2005, 54(1): 434-438. doi: 10.7498/aps.54.434
    [20] 袁晓利, 施 毅, 杨红官, 卜惠明, 吴 军, 赵 波, 张 荣, 郑有钭. 硅量子点中电子的荷电动力学特征.  , 2000, 49(10): 2037-2040. doi: 10.7498/aps.49.2037
计量
  • 文章访问数:  7681
  • PDF下载量:  758
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-24
  • 修回日期:  2014-04-28
  • 刊出日期:  2014-08-05

/

返回文章
返回
Baidu
map