-
对磁场约束下激光诱导铜等离子体光谱强度演化进行了实验研究,分析了在磁场约束环境下的等离子体光谱强度演化过程以及激光能量对光谱增强的影响. 实验结果表明:在磁场约束下铜等离子体内原子光谱和离子光谱均有所增强,在磁场约束下Cu I 510.55 nm谱线强度时间演化过程中在1.2–5.7 μs时间范围内附近出现双峰结构,在距离靶材表面0–1.4 mm空间范围内磁场约束Cu I 510.55 nm光谱增强明显. Cu I 510.55 nm和Cu I 515.32 nm光谱增强因子随激光能量的增加呈单调递减变化,激光能量20 mJ时增强因子最大分别为11和8. 对磁场约束下等离子体发射光谱强度增强的物理原因进行了探讨.In this paper, the evolution of laser-induced copper plasma spectrum intensity under magnetic field confinement is studied. The evolution process of plasma spectrum intensity and laser energy effect on spectral enhancement are analyzed. Experimental results show that the atomic spectrum and ion spectrum of copper plasma are enhanced as magnetic field increases. In the spectral intensity evolution plot of Cu I 510.55 nm there appears double peak structure in a time range from 1.2 μs to 5.7 μs. The spectral intensity of Cu I 510.55 nm is significantly enhanced in a space range from 0 mm to 1.4 mm away from the target surface. The spectral enhancement factors of Cu I 510.55 nm and Cu I 515.32 nm monotonically decrease with the laser pulse energy increasing, and the maximum enhancement factors for Cu I 510.55 nm and Cu I 515.32 nm are 11 and 8 respectively at the laser energy 20 mJ. The enhancement mechanism of magnetic confinement plasma spectrum is also discussed.
-
Keywords:
- laser plasma /
- optical enhancement /
- magnetic confined
[1] Kitaoka C, Wagatsuma K 2009 Meta. Ana. 3 003
[2] Agnes N, Tao H Y, Hao Z Q, Sun C K, Gao X, Lin J Q 2013 Chin. Phys. B 22 014209
[3] Liu J, Tao H Y, Gao X, Hao Z Q, Lin J Q 2013 Chin. Phys. B 22 044206
[4] Du C, Gao X, Shao Y, Song X W, Zhao Z M, Hao Z Q, Lin J Q 2013 Acta Phys. Sin. 62 045202 (in Chinese) [杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全 2013 62 045202]
[5] Harilal S S, Tillack M S, O'shay B, Bindhu C V, Najmabadi F 2004 Phys. Rev. E 69 026413
[6] Guo L B, Hu W, Zhang B Y, He X N, Li C M, Zhou Y S, Cai Z X, Zeng X Y, Lu Y F 2011 Opt. Exp. 19 14067
[7] Li Y, Hu C, Zhang H, Jiang Z, Li Z 2009 Appl. Opt. 48 B105
[8] Chen Z, Bogaerts A 2005 J. Phys. 97 063305
[9] Shen X K, He X N, Huang H, Lu Y F 2007 Appl. Phys. Lett. 91 081501
[10] Neogi A, Thareja R K 1999 Phys. Plasma 6 365
[11] Bittencourt José A 2004 Fundamentals of Plasma Physics Fund (New York: Springer Press) pp470-477
[12] Rai V N, Rai A K, Yueh F Y, Singh J P 2003 Appl. Opt. 42 2085
[13] Chen F F, Lieberman M A 1984 Introduction to Plasma Physics and Controlled Fusion (New York: Plenum Press) pp184-189
[14] Nolte S, Momma C, Jacobs H, Tnnermann A, Chichkov B N, Wellegehausen B, Welling H 1997 J. Opt. Soc. Am. B 14 2716
-
[1] Kitaoka C, Wagatsuma K 2009 Meta. Ana. 3 003
[2] Agnes N, Tao H Y, Hao Z Q, Sun C K, Gao X, Lin J Q 2013 Chin. Phys. B 22 014209
[3] Liu J, Tao H Y, Gao X, Hao Z Q, Lin J Q 2013 Chin. Phys. B 22 044206
[4] Du C, Gao X, Shao Y, Song X W, Zhao Z M, Hao Z Q, Lin J Q 2013 Acta Phys. Sin. 62 045202 (in Chinese) [杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全 2013 62 045202]
[5] Harilal S S, Tillack M S, O'shay B, Bindhu C V, Najmabadi F 2004 Phys. Rev. E 69 026413
[6] Guo L B, Hu W, Zhang B Y, He X N, Li C M, Zhou Y S, Cai Z X, Zeng X Y, Lu Y F 2011 Opt. Exp. 19 14067
[7] Li Y, Hu C, Zhang H, Jiang Z, Li Z 2009 Appl. Opt. 48 B105
[8] Chen Z, Bogaerts A 2005 J. Phys. 97 063305
[9] Shen X K, He X N, Huang H, Lu Y F 2007 Appl. Phys. Lett. 91 081501
[10] Neogi A, Thareja R K 1999 Phys. Plasma 6 365
[11] Bittencourt José A 2004 Fundamentals of Plasma Physics Fund (New York: Springer Press) pp470-477
[12] Rai V N, Rai A K, Yueh F Y, Singh J P 2003 Appl. Opt. 42 2085
[13] Chen F F, Lieberman M A 1984 Introduction to Plasma Physics and Controlled Fusion (New York: Plenum Press) pp184-189
[14] Nolte S, Momma C, Jacobs H, Tnnermann A, Chichkov B N, Wellegehausen B, Welling H 1997 J. Opt. Soc. Am. B 14 2716
计量
- 文章访问数: 6881
- PDF下载量: 435
- 被引次数: 0