-
基于单-双模组合压缩真空态一定范围内能够获得压缩增强的效果,引入单-双模组合压缩热态(DSMST),讨论其纠缠性质. 利用Weyl编序算符在相似变换下的不变性,简洁方便地导出了DSMST 的纠缠度-负对数值,并给出了当热效应存在时保持纠缠的条件. 研究表明:与通常的双模压缩态相比,随着参数的增加,DSMST的纠缠度增加. 作为DSMST的应用,利用其实现相干态的量子隐形传输. 结果表明:不同于纠缠度随压缩参数增加,保真度获得改善是有条件的,该条件恰好就是一正交分量涨落出现压缩增强的参数区域. 此外,解析推导了有效隐形传输保真度(>1/2)的条件.
-
关键词:
- 单-双模组合压缩热态 /
- Wigner函数 /
- 纠缠 /
- 量子隐形传态
In view of the fact that one- and two-mode combination squeezed vacuum states may exhibit stronger squeezing in a certain range, we introduce one- and two-mode combination squeezed thermal states (OTCSTS) and investigate the property of entanglement in detail. Using the remarkable property of Weyl ordering, i.e., the order-invariance of Weyl ordered operator under similar transformations, we conveniently derive the analytical expression of entanglement degree-logarithmic negativity, and then present the condition of keeping entanglement for these squeezed thermal states. It is found that the OTCSTS possesses higher entanglement than the usual two-mode squeezed thermal states for any non-zero squeezing parameter. As an application, the quantum teleportation for coherent state is considered by using the OTCSTS as an entangled channel. It is shown that the teleportation fidelity can only be enhanced within a certain range of parameters, which is just the same as the condition of exhibiting stronger squeezing in one quadrature. In addition, the condition of realizing effective quantum teleportation (>1/2) is obtained analytically.-
Keywords:
- one- and two-mode combination squeezed thermal states /
- Wigner function /
- entanglement /
- quantum teleportation
[1] L J F, Ma S J 2011 Acta Phys. Sin. 60 080301 (in Chinese) [吕菁芬, 马善钧 2011 60 080301]
[2] Kenfack A, Życzkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396
[3] Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer)
[4] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[5] Liang Y, Wu Q C, Ji X 2014 Acta Phys. Sin. 63 020301 (in Chinese) [梁艳, 吴奇成, 计新 2014 63 020301]
[6] Wu Q, Zhang Z M 2013 Acta Phys. Sin. 62 174206 (in Chinese) [吴琴, 张智明 2013 62 174206]
[7] Wu Q, Zhang Z M 2014 Chin. Phys. B 23 034203
[8] Liu P, Feng X M, Jin R G 2014 Chin. Phys. B 23 030310
[9] Fan H Y 1990 Phys. Rev. A 41 1526
[10] Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147
[11] Hu L Y, Fan H Y 2009 Phys. Rev. A 80 022115
[12] Hu L Y, Xu X X, Guo Q, Fan H Y 2010 Opt. Commun. 283 5074
[13] Fan H Y 2012 Representation and Transformation Theory in Quantum Mechanics (Hefei: University of Science and Technology of China Press) (in Chinese) [范洪义 2012 量子力学纠缠态表象与变换 (合肥: 中国科技大学出版社出版)]
[14] Fan H Y, Hu L Y 2010 Investigation on Quantum Decoherence for Open Systems by Using Entangled State Representation Method (Shanghai: Shanghai Jiaotong University Press) p110 (in Chinese) [范洪义, 胡利云 2010 开放系统量子退相干的纠缠态表象论 (上海: 上海交通大学出版社出版) 第110 页]
[15] Hu L Y, Jia F, Zhang Z M 2012 J. Opt. Soc. Am. B 29 1456
[16] Vidal G, Werner R F 2002 Phys. Rev. A 65 032314
[17] Eisert J, Plemio M B 1999 J. Mod. Opt. 46 145
[18] Duan L M, Giedke G, Cirac J O, Zoller P 2000 Phys. Rev. Lett. 84 2722
[19] Simon R 2000 Phys. Rev. Lett. 84 2726
[20] Song T Q 2004 Acta Phys. Sin. 53 3358 (in Chinese) [宋同强 2004 53 3358]
[21] Marian P, Marian T A 2006 Phys. Rev. A 74 042306
[22] Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869
[23] Hu L Y, Zhang Z M 2013 J. Opt. Soc. Am. B 30 518
-
[1] L J F, Ma S J 2011 Acta Phys. Sin. 60 080301 (in Chinese) [吕菁芬, 马善钧 2011 60 080301]
[2] Kenfack A, Życzkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396
[3] Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer)
[4] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[5] Liang Y, Wu Q C, Ji X 2014 Acta Phys. Sin. 63 020301 (in Chinese) [梁艳, 吴奇成, 计新 2014 63 020301]
[6] Wu Q, Zhang Z M 2013 Acta Phys. Sin. 62 174206 (in Chinese) [吴琴, 张智明 2013 62 174206]
[7] Wu Q, Zhang Z M 2014 Chin. Phys. B 23 034203
[8] Liu P, Feng X M, Jin R G 2014 Chin. Phys. B 23 030310
[9] Fan H Y 1990 Phys. Rev. A 41 1526
[10] Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147
[11] Hu L Y, Fan H Y 2009 Phys. Rev. A 80 022115
[12] Hu L Y, Xu X X, Guo Q, Fan H Y 2010 Opt. Commun. 283 5074
[13] Fan H Y 2012 Representation and Transformation Theory in Quantum Mechanics (Hefei: University of Science and Technology of China Press) (in Chinese) [范洪义 2012 量子力学纠缠态表象与变换 (合肥: 中国科技大学出版社出版)]
[14] Fan H Y, Hu L Y 2010 Investigation on Quantum Decoherence for Open Systems by Using Entangled State Representation Method (Shanghai: Shanghai Jiaotong University Press) p110 (in Chinese) [范洪义, 胡利云 2010 开放系统量子退相干的纠缠态表象论 (上海: 上海交通大学出版社出版) 第110 页]
[15] Hu L Y, Jia F, Zhang Z M 2012 J. Opt. Soc. Am. B 29 1456
[16] Vidal G, Werner R F 2002 Phys. Rev. A 65 032314
[17] Eisert J, Plemio M B 1999 J. Mod. Opt. 46 145
[18] Duan L M, Giedke G, Cirac J O, Zoller P 2000 Phys. Rev. Lett. 84 2722
[19] Simon R 2000 Phys. Rev. Lett. 84 2726
[20] Song T Q 2004 Acta Phys. Sin. 53 3358 (in Chinese) [宋同强 2004 53 3358]
[21] Marian P, Marian T A 2006 Phys. Rev. A 74 042306
[22] Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869
[23] Hu L Y, Zhang Z M 2013 J. Opt. Soc. Am. B 30 518
计量
- 文章访问数: 6421
- PDF下载量: 686
- 被引次数: 0