-
建立了V2控制Buck变换器的二阶离散迭代映射模型,在其基础上绘制了输出电容及其等效串联电阻(equivalent series resistance,ESR)变化时的分岔图,研究了输出电容时间常数对V2控制Buck变换器的动力学特性的影响. 研究结果表明,随着输出电容时间常数的逐渐减小,V2控制Buck变换器具有从稳定的连续导电模式(continuous conduction mode,CCM)周期1态逐渐演变到CCM周期2态、CCM周期4态、CCM周期8态、CCM混沌态、断续导电模式(discontinuous conduction mode,DCM)混沌态的动力学行为. 推导了不动点处的雅可比矩阵,利用特征值和最大Lyapunov指数对系统进行了稳定性分析,并验证了分岔分析的正确性. 最后,搭建了仿真和实验电路,用仿真和实验结果验证了文中理论分析的正确性.The second-order discrete iterative map model of V2-controlled Buck converter is established, based on which, the bifurcation diagrams with variation of output capacitance and its equivalent series resistance (ESR) are obtained, and the effect of output capacitance time-constant on the dynamic characteristics of V2-controlled Buck converter is investigated. It is found that with gradual reduction of output capacitance time-constant, the V2-controlled Buck converter shows the evolutive dynamic behavior from continuous conduction mode (CCM) period-1 to CCM period-2, CCM period-4, CCM period-8, CCM chaos, and discontinuous conduction mode (DCM) chaos. Jacobi matrix at a fixed point is also derived. According to this, the converter stability is analyzed by using characteristic values and maximum Lyapunov exponent, which validates the correctness of bifurcation analysis. Finally, the simulation and experimental circuits are set up, and the correctness of the theoretical analysis is verified by simulation and experimental results.
-
Keywords:
- switching converter /
- V2-control /
- output capacitance time-constant /
- dynamics
[1] Goder D, Pelletier W R 1996 Proceeding of HFPC' 1996 19
[2] Li J, F C 2009 IEEE Tran. Circuits and Systems, Part I 57 2552
[3] Wang F Y, Xu J P, Xu J F 2005 Proc. CSEE 25 67 (in Chinese) [王凤岩, 许建平, 许峻峰 2005 中国电机工程学报 25 67]
[4] He S Z, Zhou G H, Xu J P, Bao B C, Yang P 2013 Acta Phys. Sin. 62 110503 (in Chinese) [何圣仲, 周国华, 许建平, 包伯成, 杨平 2013 62 110503]
[5] Zhou Y F, Chen J N, Tse C K, Ke D M, Shi L X, Sun W F 2004 Acta Phys. Sin. 53 3676 (in Chinese) [周宇飞, 陈军宁, 谢智刚, 柯导明, 时龙兴, 孙伟峰 2004 53 3676]
[6] Zhou G H, Xu J P, Bao B C, Zhang F, Liu X S 2010 Chin. Phys. Lett. 27 090504
[7] Wang F Q, Ma X K, Yan Y 2011 Acta Phys. Sin. 60 060510 (in Chinese) [王发强, 马西奎, 闫晔 2011 60 060510]
[8] Lu W G, Zhou L W, Luo Q M, Du X 2007 Acta Phys. Sin. 56 6275 (in Chinese) [卢伟国, 周雒维, 罗全明, 杜雄 2007 56 6275]
[9] Dai D, Ma X K, Li X F 2003 Acta Phys. Sin. 52 2729 (in Chinese)[戴栋, 马西奎, 李小峰 2003 52 2729]
[10] Bao B C, Xu J P, Liu Z 2009 Chin. Phys. B 18 4742
[11] Wang F Q, Zhang H, Ma X K 2008 Acta Phys. Sin. 57 2842 (in Chinese) [王发强, 张浩, 马西奎 2008 57 2842]
[12] Bao B C, Xu J P, Liu Z 2009 Acta Phys. Sin. 58 2949 (in Chinese) [包伯成, 许建平, 刘中 2009 58 2949]
[13] Yang P, Bao B C, Sha J, Xu J P 2013 Acta Phys. Sin. 62 010504 (in Chinese) [杨平, 包伯成, 沙金, 许建平 2013 62 010504]
[14] Zhou G H, Xu J P, Bao B C 2012 Int. J. Bifurc. Chaos 22 1250008
[15] Wang F Q, Zhang H, Ma X K 2012 Chin. Phys. B 21 020505
[16] Zhou G H, Xu J P, Bao B C, Jin Y Y 2010 Chin. Phys. B 19 060508
[17] M. Veerachary, 2003 Proceeding of ISCAS' 03 344
[18] Xie F, Yang R, Zhang B 2010 Acta Phys. Sin. 59 8393 (in Chinese) [谢帆, 杨汝, 张波 2010 59 8393]
[19] Banerjee S, Chakrabarty K 1998 IEEE Trans. Power Electronics 13 252
[20] Zhang B, Li P, Qi Q 2002 Proc. CSEE 22 81 (in Chinese)[张波, 李萍, 齐群 2002 中国电机工程学报 22 81]
[21] Bao B C 2013 An Introduction to Chaotic Circuits (Beijing: Science Press) p164 (in Chinese) [包伯成 2013 混沌电路导论 (北京: 科学出版社)第164页]
-
[1] Goder D, Pelletier W R 1996 Proceeding of HFPC' 1996 19
[2] Li J, F C 2009 IEEE Tran. Circuits and Systems, Part I 57 2552
[3] Wang F Y, Xu J P, Xu J F 2005 Proc. CSEE 25 67 (in Chinese) [王凤岩, 许建平, 许峻峰 2005 中国电机工程学报 25 67]
[4] He S Z, Zhou G H, Xu J P, Bao B C, Yang P 2013 Acta Phys. Sin. 62 110503 (in Chinese) [何圣仲, 周国华, 许建平, 包伯成, 杨平 2013 62 110503]
[5] Zhou Y F, Chen J N, Tse C K, Ke D M, Shi L X, Sun W F 2004 Acta Phys. Sin. 53 3676 (in Chinese) [周宇飞, 陈军宁, 谢智刚, 柯导明, 时龙兴, 孙伟峰 2004 53 3676]
[6] Zhou G H, Xu J P, Bao B C, Zhang F, Liu X S 2010 Chin. Phys. Lett. 27 090504
[7] Wang F Q, Ma X K, Yan Y 2011 Acta Phys. Sin. 60 060510 (in Chinese) [王发强, 马西奎, 闫晔 2011 60 060510]
[8] Lu W G, Zhou L W, Luo Q M, Du X 2007 Acta Phys. Sin. 56 6275 (in Chinese) [卢伟国, 周雒维, 罗全明, 杜雄 2007 56 6275]
[9] Dai D, Ma X K, Li X F 2003 Acta Phys. Sin. 52 2729 (in Chinese)[戴栋, 马西奎, 李小峰 2003 52 2729]
[10] Bao B C, Xu J P, Liu Z 2009 Chin. Phys. B 18 4742
[11] Wang F Q, Zhang H, Ma X K 2008 Acta Phys. Sin. 57 2842 (in Chinese) [王发强, 张浩, 马西奎 2008 57 2842]
[12] Bao B C, Xu J P, Liu Z 2009 Acta Phys. Sin. 58 2949 (in Chinese) [包伯成, 许建平, 刘中 2009 58 2949]
[13] Yang P, Bao B C, Sha J, Xu J P 2013 Acta Phys. Sin. 62 010504 (in Chinese) [杨平, 包伯成, 沙金, 许建平 2013 62 010504]
[14] Zhou G H, Xu J P, Bao B C 2012 Int. J. Bifurc. Chaos 22 1250008
[15] Wang F Q, Zhang H, Ma X K 2012 Chin. Phys. B 21 020505
[16] Zhou G H, Xu J P, Bao B C, Jin Y Y 2010 Chin. Phys. B 19 060508
[17] M. Veerachary, 2003 Proceeding of ISCAS' 03 344
[18] Xie F, Yang R, Zhang B 2010 Acta Phys. Sin. 59 8393 (in Chinese) [谢帆, 杨汝, 张波 2010 59 8393]
[19] Banerjee S, Chakrabarty K 1998 IEEE Trans. Power Electronics 13 252
[20] Zhang B, Li P, Qi Q 2002 Proc. CSEE 22 81 (in Chinese)[张波, 李萍, 齐群 2002 中国电机工程学报 22 81]
[21] Bao B C 2013 An Introduction to Chaotic Circuits (Beijing: Science Press) p164 (in Chinese) [包伯成 2013 混沌电路导论 (北京: 科学出版社)第164页]
计量
- 文章访问数: 6120
- PDF下载量: 442
- 被引次数: 0