搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

膜量子蜂群优化的多目标频谱分配

高洪元 李晨琬

引用本文:
Citation:

膜量子蜂群优化的多目标频谱分配

高洪元, 李晨琬

Membrane-inspired quantum bee colony algorithm for multiobjective spectrum allocation

Gao Hong-Yuan, Li Chen-Wan
PDF
导出引用
  • 为了解决认知无线电系统中最大和网络效益和用户间公平性联合最优化的多目标频谱分配难题,基于量子蜂群理论和膜计算,提出了一种新的离散多目标组合优化算法–-膜量子蜂群优化. 所提算法在基础膜可以搜索到单个目标的全局最优解,在表层膜获得兼顾网络效益和公平的Pareto前端解. 通过膜间的通信规则、量子觅食行为的协同演进和非支配解排序可获得能同时求解单目标和多目标优化问题的多目标优化算法,并与经典的敏感图论着色算法、遗传算法、量子遗传算法和粒子群算法等频谱分配算法在不同的目标函数下进行仿真性能比较. 仿真结果表明:在不同网络效益函数下所提的膜量子蜂群频谱分配算法都能够较好地找到单目标最优解,优于经典的频谱分配算法和已有的智能频谱分配算法,还可获得多目标频谱分配的Pareto前端最优解集.
    In order to solve the problem of the multi-objective spectrum allocation on the joint optimization of maximal network utility and fairness of users in cognitive radio network, based on quantum bee colony theory and membrane computing, a novel multi-objective discrete combinatorial optimization algorithm, named membrane-inspired quantum bee optimization, is proposed. The global optimal solution of single objective can be searched in the elementary membranes, and Pareto front solutions which take account of network utility and fairness, can be obtained from skin membrane with the proposed method. The multi-objective optimization algorithm, which can solve both single objective and multi-objective optimization problems at the same time, is designed by the communication rules between membranes, the cooperative evolution of foraging behavior based on quantum state, and non-dominated sorting. Compared with classical color-sensitive graph coloring algorithm, genetic algorithm, quantum genetic algorithm, and particle swarm optimization under different objective functions, the proposed spectrum allocation method can search the global optimal solution of single objective as shown by the simulation results, and it is superior to classical spectrum allocation algorithms and existing intelligence spectrum allocation methods. The optimal Pareto front solutions of multi-objective spectrum allocation are also obtained.
    • 基金项目: 国家自然科学基金(批准号:61102106,61102105)、中国博士后科学基金(批准号:2013M530148)、中央高校基本科研业务费(批准号:HEUCF140809)和黑龙江省博士后科学基金(批准号:LBH-Z13054)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61102106, 61102105), the China Postdoctoral Science Foundation (Grant No. 2013M530148), the Fundamental Research Fund for the Central Universities, China (Grant No. HEUCF140809), and the Heilongjiang Postdoctoral Fund, China (Grant No. LBH-Z13054).
    [1]

    Chai Z Y, Chen L, Zhu S F 2012 Acta Phys. Sin. 61 058801 (in Chinese) [柴争义, 陈亮, 朱思峰 2012 61 058801]

    [2]

    Zheng S L, Yang X N 2012 Acta Phys. Sin. 61 148402 (in Chinese) [郑仕链, 杨小牛 2012 61 148402]

    [3]

    Zhao Z J, Xu S Y, Zheng S L, Yang X N 2009 Acta Phys. Sin. 58 5118 (in Chinese) [赵知劲, 徐世宇, 郑仕链, 杨小牛 2009 58 5118]

    [4]

    Haykin S 2005 IEEE J. Select. Areas Commun. 23 201

    [5]

    Liu Y, Peng Q C, Shao H Z, Peng Q H, Wang L 2013 Acta Phys. Sin. 62 078406 (in Chinese) [刘允, 彭启琮, 邵怀宗, 彭启航, 王玲 2013 62 078406]

    [6]

    Tang J, Misra S, Xue G 2008 Computer Networks 52 2148

    [7]

    Chai Z Y, Zheng L P, Zhu S F 2012 Acta Phys. Sin. 61 118801 (in Chinese) [柴争义, 郑丽萍, 朱思峰 2012 61 118801]

    [8]

    Wang Z, Li Y M, Chen B, Zhou T 2013 Acta Phys. Sin. 62 128802 (in Chinese) [汪照, 李有明, 陈斌, 邹婷 2013 62 128802]

    [9]

    Zu Y X, Zhou J 2012 Chin. Phys. B 21 019501

    [10]

    Zu Y X, Zhou J, Zeng C C 2010 Chin. Phys. B 19 119501

    [11]

    Zheng H, Peng C 2005 Proc. IEEE International Conference on Communications (ICC) 5 3132

    [12]

    Peng C, Zheng H, Zhao B Y 2006 ACM Mobile Networks and Applications 11 555

    [13]

    Clancy T C 2009 Annales des Telecommunications Annals of Telecommunications 64 573

    [14]

    Huang J, Berry R A, Honig M L 2006 ACM Mobile Networks and Applications 11 405

    [15]

    Niyato D, Hossain E 2008 IEEE Trans. Wireless Commun. 7 2651

    [16]

    Zhao Z J, Peng Z, Zheng S L, Shang J N 2009 IEEE Trans. Wireless Commun. 8 4421

    [17]

    Thilakawardana D, Moessner K 2008 IET Commun. 2 827

    [18]

    Zhao Z J, Peng Z, Zheng S L, Xu S Y, Lou C Y, Yang X N 2009 Acta Phys. Sin. 58 1358 (in Chinese) [赵知劲, 彭振, 郑仕链, 徐世宇, 楼才义, 杨小牛 2009 58 1358]

    [19]

    Chai Z Y, Liu F, Zhu S F 2011 Acta Phys. Sin. 60 068803 (in Chinese) [柴争义, 刘芳, 朱思峰 2011 60 068803]

    [20]

    Srinivas N, Kalyanmoy D 1994 Evolut. Comput. 2 221

    [21]

    Deb K, Pratap A, Agarwal S, Meyarivan T 2002 IEEE Trans. Evolut. Comput. 6 182

    [22]

    Gao H Y, Cao J L, Diao M 2013 Int. J. Comput Appl. Technol. 46 244

    [23]

    Păun G, Rozenberg G 2002 Theor. Comput. Sci. 287 73

    [24]

    Păun G 2000 J. Comput. Syst. Sci. 61 108

  • [1]

    Chai Z Y, Chen L, Zhu S F 2012 Acta Phys. Sin. 61 058801 (in Chinese) [柴争义, 陈亮, 朱思峰 2012 61 058801]

    [2]

    Zheng S L, Yang X N 2012 Acta Phys. Sin. 61 148402 (in Chinese) [郑仕链, 杨小牛 2012 61 148402]

    [3]

    Zhao Z J, Xu S Y, Zheng S L, Yang X N 2009 Acta Phys. Sin. 58 5118 (in Chinese) [赵知劲, 徐世宇, 郑仕链, 杨小牛 2009 58 5118]

    [4]

    Haykin S 2005 IEEE J. Select. Areas Commun. 23 201

    [5]

    Liu Y, Peng Q C, Shao H Z, Peng Q H, Wang L 2013 Acta Phys. Sin. 62 078406 (in Chinese) [刘允, 彭启琮, 邵怀宗, 彭启航, 王玲 2013 62 078406]

    [6]

    Tang J, Misra S, Xue G 2008 Computer Networks 52 2148

    [7]

    Chai Z Y, Zheng L P, Zhu S F 2012 Acta Phys. Sin. 61 118801 (in Chinese) [柴争义, 郑丽萍, 朱思峰 2012 61 118801]

    [8]

    Wang Z, Li Y M, Chen B, Zhou T 2013 Acta Phys. Sin. 62 128802 (in Chinese) [汪照, 李有明, 陈斌, 邹婷 2013 62 128802]

    [9]

    Zu Y X, Zhou J 2012 Chin. Phys. B 21 019501

    [10]

    Zu Y X, Zhou J, Zeng C C 2010 Chin. Phys. B 19 119501

    [11]

    Zheng H, Peng C 2005 Proc. IEEE International Conference on Communications (ICC) 5 3132

    [12]

    Peng C, Zheng H, Zhao B Y 2006 ACM Mobile Networks and Applications 11 555

    [13]

    Clancy T C 2009 Annales des Telecommunications Annals of Telecommunications 64 573

    [14]

    Huang J, Berry R A, Honig M L 2006 ACM Mobile Networks and Applications 11 405

    [15]

    Niyato D, Hossain E 2008 IEEE Trans. Wireless Commun. 7 2651

    [16]

    Zhao Z J, Peng Z, Zheng S L, Shang J N 2009 IEEE Trans. Wireless Commun. 8 4421

    [17]

    Thilakawardana D, Moessner K 2008 IET Commun. 2 827

    [18]

    Zhao Z J, Peng Z, Zheng S L, Xu S Y, Lou C Y, Yang X N 2009 Acta Phys. Sin. 58 1358 (in Chinese) [赵知劲, 彭振, 郑仕链, 徐世宇, 楼才义, 杨小牛 2009 58 1358]

    [19]

    Chai Z Y, Liu F, Zhu S F 2011 Acta Phys. Sin. 60 068803 (in Chinese) [柴争义, 刘芳, 朱思峰 2011 60 068803]

    [20]

    Srinivas N, Kalyanmoy D 1994 Evolut. Comput. 2 221

    [21]

    Deb K, Pratap A, Agarwal S, Meyarivan T 2002 IEEE Trans. Evolut. Comput. 6 182

    [22]

    Gao H Y, Cao J L, Diao M 2013 Int. J. Comput Appl. Technol. 46 244

    [23]

    Păun G, Rozenberg G 2002 Theor. Comput. Sci. 287 73

    [24]

    Păun G 2000 J. Comput. Syst. Sci. 61 108

  • [1] 杨小龙, 谭学治, 关凯. 认知无线电网络中基于抢占式排队论的频谱切换模型.  , 2015, 64(10): 108403. doi: 10.7498/aps.64.108403
    [2] 伍春, 江虹, 尤晓建. 基于博弈论的认知无线电网络跨层资源分配.  , 2014, 63(8): 088801. doi: 10.7498/aps.63.088801
    [3] 郑仕链, 杨小牛, 赵知劲. 用于随机解调器压缩采样的重构判定方法.  , 2014, 63(22): 228401. doi: 10.7498/aps.63.228401
    [4] 柴争义, 王秉, 李亚伦. 拟态物理学优化的认知无线电网络频谱分配.  , 2014, 63(22): 228802. doi: 10.7498/aps.63.228802
    [5] 张学军, 鲁友, 田峰, 孙知信, 成谢锋. 基于信任度的双门限协作频谱感知算法.  , 2014, 63(7): 078401. doi: 10.7498/aps.63.078401
    [6] 殷聪, 谭学治, 马琳, 于洋. 认知无线电中基于频谱聚合的全局比例公平调度算法.  , 2014, 63(11): 118402. doi: 10.7498/aps.63.118402
    [7] 刘允, 彭启琮, 邵怀宗, 彭启航, 王玲. 一种基于授权信道特性的认知无线电频谱检测算法.  , 2013, 62(7): 078406. doi: 10.7498/aps.62.078406
    [8] 郑仕链, 杨小牛. 用于认知无线电协作频谱感知的混合蛙跳算法群体初始化技术.  , 2013, 62(7): 078405. doi: 10.7498/aps.62.078405
    [9] 柴争义, 陈亮, 朱思峰. 混沌免疫多目标算法求解认知引擎参数优化问题.  , 2012, 61(5): 058801. doi: 10.7498/aps.61.058801
    [10] 柴争义, 郑丽萍, 朱思峰. 混沌免疫算法求解认知无线电网络资源分配问题.  , 2012, 61(11): 118801. doi: 10.7498/aps.61.118801
    [11] 郑仕链, 杨小牛. 绿色认知无线电自适应参数调整.  , 2012, 61(14): 148402. doi: 10.7498/aps.61.148402
    [12] 周杰, 刘元安, 吴帆, 张洪光, 俎云霄. 基于混沌并行遗传算法的多目标无线传感器网络跨层资源分配.  , 2011, 60(9): 090504. doi: 10.7498/aps.60.090504
    [13] 徐贤胜, 郭鹏, 黄思训, 项杰. 无线电掩星滑动频谱方法和后传播方法的分析比较.  , 2011, 60(9): 099202. doi: 10.7498/aps.60.099202
    [14] 柴争义, 刘芳, 朱思峰. 混沌量子克隆算法求解认知无线网络频谱分配问题.  , 2011, 60(6): 068803. doi: 10.7498/aps.60.068803
    [15] 俎云霄, 周杰. 基于组合混沌遗传算法的认知无线电资源分配.  , 2011, 60(7): 079501. doi: 10.7498/aps.60.079501
    [16] 郑仕链, 楼才义, 杨小牛. 基于改进混合蛙跳算法的认知无线电协作频谱感知.  , 2010, 59(5): 3611-3617. doi: 10.7498/aps.59.3611
    [17] 周杰, 俎云霄. 一种用于认知无线电资源分配的并行免疫遗传算法.  , 2010, 59(10): 7508-7515. doi: 10.7498/aps.59.7508
    [18] 赵知劲, 徐世宇, 郑仕链, 杨小牛. 基于二进制粒子群算法的认知无线电决策引擎.  , 2009, 58(7): 5118-5125. doi: 10.7498/aps.58.5118
    [19] 赵知劲, 彭振, 郑仕链, 徐世宇, 楼才义, 杨小牛. 基于量子遗传算法的认知无线电频谱分配.  , 2009, 58(2): 1358-1363. doi: 10.7498/aps.58.1358
    [20] 赵知劲, 郑仕链, 尚俊娜, 孔宪正. 基于量子遗传算法的认知无线电决策引擎研究.  , 2007, 56(11): 6760-6766. doi: 10.7498/aps.56.6760
计量
  • 文章访问数:  5913
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-02
  • 修回日期:  2014-03-04
  • 刊出日期:  2014-06-05

/

返回文章
返回
Baidu
map