搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

认知无线电中基于频谱聚合的全局比例公平调度算法

殷聪 谭学治 马琳 于洋

引用本文:
Citation:

认知无线电中基于频谱聚合的全局比例公平调度算法

殷聪, 谭学治, 马琳, 于洋

Global proportional fairness scheduling algorithm based on spectrum aggregation in cognitive radio

Yin Cong, Tan Xue-Zhi, Ma Lin, Yu Yang
PDF
导出引用
  • 针对认知无线电系统中认知用户在利用频谱聚合技术时出现的调度不公平问题,提出了一种基于频谱聚合的全局比例公平调度算法. 在比例公平调度的基础上,结合频谱聚合技术的特点,引入了频谱聚合的跨度与认知用户剩余数据队列长度这两个参量,使认知用户在聚合可用频谱的范围内,最大限度的保证吞吐量公平性. 仿真结果表明,相比于局部比例公平调度算法和最大载干比调度算法,该算法在公平性指数和系统服务时间上更占优势,同时具有较低的吞吐量抖动,从而有效地提高系统容量和系统效率,确保认知用户之间对系统资源的公平利用.
    In a cognitive radio system, it is still a problem that resource scheduling among secondary users (SUs) is distributed unfairly when spectrum aggregation technology is involved to support high-speed data transmission. A global proportional fair scheduling algorithm is proposed based on spectrum aggregation to solve the problem. This paper focuses on the relation between the fairness for SUs and spectrum aggregation. Throughput fairness can be guaranteed as much as possible after considering two parameters, the span of spectrum aggregation and the remaining data queue length of SUs. Simulation results show that the proposed scheduling algorithm takes advantage of fairness and the delay of system service as compared with the other two scheduling algorithms, max C/I and partial proportional fairness. Meanwhile, it is shown that the proposed scheduling algorithm has lower throughput shake to make sure of fairness among SUs and high efficiency of system.
    • 基金项目: 国家自然科学基金(批准号:61071104)和国家科技重大专项(批准号:2011ZX03004-004)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61071104), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX03004-004).
    [1]

    Iwamura M, Etemad K, Fong M H, Nory R, Love R 2010 IEEE Communications Magazine 48 60

    [2]

    Shen Z K, Papasakellariou A, Montojo J, Gerstenberger D, Xu F L 2012 IEEE Communications Magazine 50 122

    [3]

    Liu Y, Peng Q Z, Shao H Z, Peng Q H, Wang L 2013 Acta Phys. Sin. 62 078406 (in Chinese)[刘允, 彭启琮, 邵怀宗, 彭启航, 王玲 2013 62 078406]

    [4]

    Jiang H, Liu C B, Wu C 2013 Acta Phys. Sin. 62 038804 (in Chinese)[江虹, 刘从彬, 伍春 2013 62 038804]

    [5]

    Yuan G X, Zhang X, Wang W B, Yang Y 2010 IEEE Communications Magazine 48 88

    [6]

    Galaviz G, Covarrubias D H, Andrade A G 2011 IEEE Communications Letters 15 1202

    [7]

    Pedersen K I, Frederiksen F, Rosa C, Nguyen H, Garcia L G U, Wang Y Y 2011 IEEE Communications Magazine 49 89

    [8]

    Rui Y, Cheng P, Li M Q, Zhang Q T, Guizani M 2013 IEEE Wireless Communications 20 101

    [9]

    Li J P, Tan Z H, Tao C, Xu S Y 2010 International Conference on Wireless Communications and Signal Processing Su Zhou, Oct. 21-23, 2010 p1

    [10]

    Zu Y X, Zhou J 2012 Chin. Phys. B 21 019501

    [11]

    Zhang X J, Lu Y, Tian F, Sun Z X, Cheng X F 2014 Acta Phys. Sin. 63 078401 (in Chinese)[张学军, 鲁友, 田峰, 孙知信, 成谢锋 2014 63 078401]

    [12]

    Zheng S L, Yang X N 2012 Acta Phys. Sin. 61 148402 (in Chinese)[郑仕链, 杨小牛 2012 61 148402]

    [13]

    Chai Z Y, Zheng L P, Zhu S F 2012 Acta Phys. Sin. 61 118801 (in Chinese)[柴争义, 郑丽萍, 朱思峰 2012 61 118801]

    [14]

    Zu Y X, Zhou J 2011 Acta Phys. Sin. 60 079501 (in Chinese)[俎云霄, 周杰 2011 60 079501]

    [15]

    Zhou H, Fan P Y, Letaief K B, Xia X G 2010 IEEE International Conference on Communications Cape Town, May 23-27, 2010 p1

    [16]

    Shi H, Prasad R, Onur E, Niemegeers I 2013 IEEE Communications Surveys & Tutorials 99 1

    [17]

    Kwan R, Leung C, Zhang J 2009 IEEE Signal Processing Letters 16 461

    [18]

    Attar A, Devroye N, Li H M, Leung V C M 2010 7th International Symposium on Wireless Communication Systems York, Sept. 19-22, 2010 p1041

    [19]

    Zhou H, Fan P Y, Li J 2011 IEEE Trans. on Vehicular Technology 60 1867

    [20]

    Almatarneh R K, Ahmed M H, Dobre O A 2010 Vehicular Technology Conference Fall Ottawa ON, Sept. 6-9, 2010 p1

    [21]

    Girici T, Zhu C X, Agre J R, Ephremides A 2010 Journal of Communications and Networks 12 30

    [22]

    Wang X, Cai L 2013 IEEE Trans. on Wireless Communications 12 1584

    [23]

    Ren Z Y, Chen S Z, Hu B, Ma W G 2013 IEEE Communications Letters 17 868

    [24]

    Wang B, Zhao D M 2010 IEEE Trans. on Wireless Communications 9 1150

    [25]

    Jeon J H, Lim J T 2012 IET Communications 6 2816

    [26]

    Matthew A, Krishnan K, Kavita R, Alexander S, Phil W 2001 IEEE Communications Magazine 39 150

    [27]

    Wang Q, Xu D, Xu J 2006 25th International IPCCC Phoenix, April. 10-12, 2006 p97

  • [1]

    Iwamura M, Etemad K, Fong M H, Nory R, Love R 2010 IEEE Communications Magazine 48 60

    [2]

    Shen Z K, Papasakellariou A, Montojo J, Gerstenberger D, Xu F L 2012 IEEE Communications Magazine 50 122

    [3]

    Liu Y, Peng Q Z, Shao H Z, Peng Q H, Wang L 2013 Acta Phys. Sin. 62 078406 (in Chinese)[刘允, 彭启琮, 邵怀宗, 彭启航, 王玲 2013 62 078406]

    [4]

    Jiang H, Liu C B, Wu C 2013 Acta Phys. Sin. 62 038804 (in Chinese)[江虹, 刘从彬, 伍春 2013 62 038804]

    [5]

    Yuan G X, Zhang X, Wang W B, Yang Y 2010 IEEE Communications Magazine 48 88

    [6]

    Galaviz G, Covarrubias D H, Andrade A G 2011 IEEE Communications Letters 15 1202

    [7]

    Pedersen K I, Frederiksen F, Rosa C, Nguyen H, Garcia L G U, Wang Y Y 2011 IEEE Communications Magazine 49 89

    [8]

    Rui Y, Cheng P, Li M Q, Zhang Q T, Guizani M 2013 IEEE Wireless Communications 20 101

    [9]

    Li J P, Tan Z H, Tao C, Xu S Y 2010 International Conference on Wireless Communications and Signal Processing Su Zhou, Oct. 21-23, 2010 p1

    [10]

    Zu Y X, Zhou J 2012 Chin. Phys. B 21 019501

    [11]

    Zhang X J, Lu Y, Tian F, Sun Z X, Cheng X F 2014 Acta Phys. Sin. 63 078401 (in Chinese)[张学军, 鲁友, 田峰, 孙知信, 成谢锋 2014 63 078401]

    [12]

    Zheng S L, Yang X N 2012 Acta Phys. Sin. 61 148402 (in Chinese)[郑仕链, 杨小牛 2012 61 148402]

    [13]

    Chai Z Y, Zheng L P, Zhu S F 2012 Acta Phys. Sin. 61 118801 (in Chinese)[柴争义, 郑丽萍, 朱思峰 2012 61 118801]

    [14]

    Zu Y X, Zhou J 2011 Acta Phys. Sin. 60 079501 (in Chinese)[俎云霄, 周杰 2011 60 079501]

    [15]

    Zhou H, Fan P Y, Letaief K B, Xia X G 2010 IEEE International Conference on Communications Cape Town, May 23-27, 2010 p1

    [16]

    Shi H, Prasad R, Onur E, Niemegeers I 2013 IEEE Communications Surveys & Tutorials 99 1

    [17]

    Kwan R, Leung C, Zhang J 2009 IEEE Signal Processing Letters 16 461

    [18]

    Attar A, Devroye N, Li H M, Leung V C M 2010 7th International Symposium on Wireless Communication Systems York, Sept. 19-22, 2010 p1041

    [19]

    Zhou H, Fan P Y, Li J 2011 IEEE Trans. on Vehicular Technology 60 1867

    [20]

    Almatarneh R K, Ahmed M H, Dobre O A 2010 Vehicular Technology Conference Fall Ottawa ON, Sept. 6-9, 2010 p1

    [21]

    Girici T, Zhu C X, Agre J R, Ephremides A 2010 Journal of Communications and Networks 12 30

    [22]

    Wang X, Cai L 2013 IEEE Trans. on Wireless Communications 12 1584

    [23]

    Ren Z Y, Chen S Z, Hu B, Ma W G 2013 IEEE Communications Letters 17 868

    [24]

    Wang B, Zhao D M 2010 IEEE Trans. on Wireless Communications 9 1150

    [25]

    Jeon J H, Lim J T 2012 IET Communications 6 2816

    [26]

    Matthew A, Krishnan K, Kavita R, Alexander S, Phil W 2001 IEEE Communications Magazine 39 150

    [27]

    Wang Q, Xu D, Xu J 2006 25th International IPCCC Phoenix, April. 10-12, 2006 p97

  • [1] 张海洋, 黄永明, 杨绿溪. 无线携能通信系统中基于能量获取比例公平的波束成形设计.  , 2015, 64(2): 028402. doi: 10.7498/aps.64.028402
    [2] 杨小龙, 谭学治, 关凯. 认知无线电网络中基于抢占式排队论的频谱切换模型.  , 2015, 64(10): 108403. doi: 10.7498/aps.64.108403
    [3] 伍春, 江虹, 尤晓建. 基于博弈论的认知无线电网络跨层资源分配.  , 2014, 63(8): 088801. doi: 10.7498/aps.63.088801
    [4] 柴争义, 王秉, 李亚伦. 拟态物理学优化的认知无线电网络频谱分配.  , 2014, 63(22): 228802. doi: 10.7498/aps.63.228802
    [5] 郑仕链, 杨小牛, 赵知劲. 用于随机解调器压缩采样的重构判定方法.  , 2014, 63(22): 228401. doi: 10.7498/aps.63.228401
    [6] 高洪元, 李晨琬. 膜量子蜂群优化的多目标频谱分配.  , 2014, 63(12): 128802. doi: 10.7498/aps.63.128802
    [7] 张学军, 鲁友, 田峰, 孙知信, 成谢锋. 基于信任度的双门限协作频谱感知算法.  , 2014, 63(7): 078401. doi: 10.7498/aps.63.078401
    [8] 江虹, 刘从彬, 伍春. 认知无线电网络中提高传输层端到端吞吐率的跨层参数配置.  , 2013, 62(3): 038804. doi: 10.7498/aps.62.038804
    [9] 郑仕链, 杨小牛. 用于认知无线电协作频谱感知的混合蛙跳算法群体初始化技术.  , 2013, 62(7): 078405. doi: 10.7498/aps.62.078405
    [10] 刘允, 彭启琮, 邵怀宗, 彭启航, 王玲. 一种基于授权信道特性的认知无线电频谱检测算法.  , 2013, 62(7): 078406. doi: 10.7498/aps.62.078406
    [11] 柴争义, 郑丽萍, 朱思峰. 混沌免疫算法求解认知无线电网络资源分配问题.  , 2012, 61(11): 118801. doi: 10.7498/aps.61.118801
    [12] 郑仕链, 杨小牛. 绿色认知无线电自适应参数调整.  , 2012, 61(14): 148402. doi: 10.7498/aps.61.148402
    [13] 徐贤胜, 郭鹏, 黄思训, 项杰. 无线电掩星滑动频谱方法和后传播方法的分析比较.  , 2011, 60(9): 099202. doi: 10.7498/aps.60.099202
    [14] 柴争义, 刘芳, 朱思峰. 混沌量子克隆算法求解认知无线网络频谱分配问题.  , 2011, 60(6): 068803. doi: 10.7498/aps.60.068803
    [15] 俎云霄, 周杰. 基于组合混沌遗传算法的认知无线电资源分配.  , 2011, 60(7): 079501. doi: 10.7498/aps.60.079501
    [16] 周杰, 俎云霄. 一种用于认知无线电资源分配的并行免疫遗传算法.  , 2010, 59(10): 7508-7515. doi: 10.7498/aps.59.7508
    [17] 郑仕链, 楼才义, 杨小牛. 基于改进混合蛙跳算法的认知无线电协作频谱感知.  , 2010, 59(5): 3611-3617. doi: 10.7498/aps.59.3611
    [18] 赵知劲, 徐世宇, 郑仕链, 杨小牛. 基于二进制粒子群算法的认知无线电决策引擎.  , 2009, 58(7): 5118-5125. doi: 10.7498/aps.58.5118
    [19] 赵知劲, 彭振, 郑仕链, 徐世宇, 楼才义, 杨小牛. 基于量子遗传算法的认知无线电频谱分配.  , 2009, 58(2): 1358-1363. doi: 10.7498/aps.58.1358
    [20] 赵知劲, 郑仕链, 尚俊娜, 孔宪正. 基于量子遗传算法的认知无线电决策引擎研究.  , 2007, 56(11): 6760-6766. doi: 10.7498/aps.56.6760
计量
  • 文章访问数:  6564
  • PDF下载量:  827
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-31
  • 修回日期:  2014-02-26
  • 刊出日期:  2014-06-05

/

返回文章
返回
Baidu
map