-
利用瑞利散射方法研究了超声喷流Ar-CH4混合团簇和超声喷流Ar-H2混合团簇的特性. 通过测量不同混合比例和不同背压下所形成混合团簇的散射信号发现,当用Ar气和CH4的混合气体进行超声喷流时很容易形成Ar-CH4 混合团簇,当Ar气含量为50%时混合团簇尺度最大且大于相同气压下纯Ar团簇尺度和纯CH4团簇尺度. 实验发现,与纯H2团簇只能在低温条件下获得不同,常温下即可形成Ar-H2混合团簇,实现了常温下含氢团簇的获取,从而有效降低了制备成本. 在H2含量大于40% 时混合团簇开始形成并在60%时达到最大尺度. 含氢(氘)混合团簇在氢(氘)团簇的基础上引入了更重的异核Ar元素,在激光氘团簇聚变实验中它将进一步加速氘离子从而获得更高的能量,并具有更高的中子产额和聚变效率.The average mixed cluster sizes in different mixing proportions of Ar-CH4 mixed cluster and Ar-H2 mixed cluster in supersonic gas jet are studied by Rayleigh scattering method. It is found that Ar-CH4 mixed cluster could form easily when the mixed Ar and CH4 gas are used in gas jet, and the maximum cluster size is achieved when the content of Ar is 50%. The maximum cluster size of Ar-CH4 mixed cluster is larger than that of either Ar cluster or CH4 cluster. Being different from pure hydrogen cluster which only forms at liquid nitrogen temperature, Ar-H2 mixed cluster can form at room temperature. So this is the first time we have obtained hydrogen cluster at room temperature. Ar-H2 mixed cluster starts to form at H2 content value higher than 40% and it reaches maximum size when the content of H2 is 60%. Hydrogen (deuterium) mixed clusters introduce heavier Ar element on the basis of hydrogen (deuterium) clusters. It will further accelerate the deuterium ions to higher energy in deuterium cluster laser fusion experiments, so we can obtain higher neutron yield and fusion efficiency.
-
Keywords:
- mixed clusters /
- cluster size /
- Rayleigh scattering
[1] Last I, Jortner J 2001 Phys. Rev. Lett. 87 033401
[2] Grillon G, Balcou P, Chambaret J P, Hulin D, Martino J, Moustaizis S, Notebaert L, Pittman M, Pussieux T, Rousse A, Rousseau J P, Sebban S, Sublemontier O, Schmidt M 2002 Phys. Rev. Lett. 89 065005
[3] Hohenberger M, Symes D R, Madison K W, Sumeruk A, Dyer G, Edens A, Grigsby W, Hays G, Teichmann M, Ditmire T 2005 Phys. Rev. Lett. 95 195003
[4] Han J F, Yang C W, Miao J W, Fu P T, Luo X B, Shi M G 2010 J. Appl. Phys. 108 064327
[5] Liu M, Lu J F, Han J F, Li J, Luo X B, Miao J W, Shi M G, Yang C W 2009 Acta Phys. Sin. 58 6951 (in Chinese) [刘猛, 陆建峰, 韩纪峰, 李佳, 罗小兵, 缪竞威, 师勉恭, 杨朝文 2009 58 6951]
[6] Han J F, Yang C W, Miao J W, Lu J F, Liu M, Luo X B, Shi M G 2010 Eur. Phys. J. D 56 347
[7] Han J F, Yang C W, Miao J W, Lu J F, Liu M, Luo X B, Shi M G 2010 Chin. Phys. Lett. 27 043601
[8] Fu P T, Han J F, Mou Y H, Han D, Yang C W 2011 Acta Phys. Sin. 60 053602 (in Chinese) [付鹏涛, 韩纪锋, 牟艳红, 韩丹, 杨朝文 2011 60 053602]
[9] Hagena O F, Obert W 1972 J. Chem. Phys. 26 994
[10] Hagena O F 1992 Rev. Sci. Instrum. 63 2374
-
[1] Last I, Jortner J 2001 Phys. Rev. Lett. 87 033401
[2] Grillon G, Balcou P, Chambaret J P, Hulin D, Martino J, Moustaizis S, Notebaert L, Pittman M, Pussieux T, Rousse A, Rousseau J P, Sebban S, Sublemontier O, Schmidt M 2002 Phys. Rev. Lett. 89 065005
[3] Hohenberger M, Symes D R, Madison K W, Sumeruk A, Dyer G, Edens A, Grigsby W, Hays G, Teichmann M, Ditmire T 2005 Phys. Rev. Lett. 95 195003
[4] Han J F, Yang C W, Miao J W, Fu P T, Luo X B, Shi M G 2010 J. Appl. Phys. 108 064327
[5] Liu M, Lu J F, Han J F, Li J, Luo X B, Miao J W, Shi M G, Yang C W 2009 Acta Phys. Sin. 58 6951 (in Chinese) [刘猛, 陆建峰, 韩纪峰, 李佳, 罗小兵, 缪竞威, 师勉恭, 杨朝文 2009 58 6951]
[6] Han J F, Yang C W, Miao J W, Lu J F, Liu M, Luo X B, Shi M G 2010 Eur. Phys. J. D 56 347
[7] Han J F, Yang C W, Miao J W, Lu J F, Liu M, Luo X B, Shi M G 2010 Chin. Phys. Lett. 27 043601
[8] Fu P T, Han J F, Mou Y H, Han D, Yang C W 2011 Acta Phys. Sin. 60 053602 (in Chinese) [付鹏涛, 韩纪锋, 牟艳红, 韩丹, 杨朝文 2011 60 053602]
[9] Hagena O F, Obert W 1972 J. Chem. Phys. 26 994
[10] Hagena O F 1992 Rev. Sci. Instrum. 63 2374
计量
- 文章访问数: 6041
- PDF下载量: 601
- 被引次数: 0