-
本文采用双模晶体相场模型,计算了双模二维相图;模拟了形变诱导六角相向正方相转变过程的多级微结构演化,详细分析了位相差、形变方向对位错、晶界、晶体结构、新相形貌的影响规律. 模拟结果表明:形变方向影响正方相晶核的形核位置和生长方向,拉伸时正方相优先在变形带上形核,垂直于形变方向长大,而压缩时正方相直接在位错和晶界的能量较高处形核,平行于形变方向长大;位相差对形变诱发晶界甄没过程有显著影响,体现在能量峰上为,小位相差晶界位错的攀滑移和甄没形成一个能量峰,大位相差晶界位错攀滑移和甄没因分阶段完成而不出现明显的能量峰;形变诱导相变过程中各种因素相互作用复杂,是相变与动态再结晶的复合转变.The two-mode phase-field-crystal (PFC) method is used to calculate two-dimensional phase diagram and to simulate the process of multistage microstructural evolution in the transformation from hexagonal phase to square phase, which is induced by deformation. And the effect of misorientation and deformation on dislocation, grain boundary, crystal structure and morphology of the new phase is carefully analyzed. Simulation results show that both the nucleation site and growth direction of the square phase are affected by the direction of deformation. Under a tensile deformation, the nucleation of the square phase occurs preferentially in the deformation zone; while under compression deformation, the nucleation of the square phase may begin at dislocations and grain boundary. Moreover, the new phase grows towards the direction along which the degree of atomic mismatch decreases, i.e. the vertical direction of tensile deformation and the parallel direction of compressive deformation. Besides, the free energy varies with misorientation. In small misorientation, the dislocation climbing, slipping and annihilating will result in an energy peak; while in a big misorientation, the dislocation annihilates in several stages and thus offsetting the energy caused by deformation. Furthermore, the process of phase transformation is complex: It is not a pure phase transformation but a composite change of phase transformation and dynamic recrystallization.
-
Keywords:
- two-mode phase field crystal method /
- hexagonal phase /
- square phase /
- phase transformation
[1] Elder K R, Provatas N, Berry J, Stefanovic P 2007 Phys. Rev. B 75 064107
[2] Elder K R, Katakowski M, Haataja M 2001 Phys. Rev. Lett. 88 245701
[3] Jaatinen A, Ala-Nissila T 2010 Phys. Rev. E 82 061602
[4] Jaatinen A, Achim C V, Elder K R 2009 Phys. Rev. E 80 031602
[5] Wu K A, Adland A, Karma A 2010 Phys. Rev. E 81 061601
[6] Greenwood M, Provatas N, Rottler J 2010 Phys. Rev. lett. 105 045702
[7] Greenwood M, Rottler J, Provatas N 2011 Phys. Rev. E 83 031601
[8] Elder K R, Huang Z F, Provatas N 2010 Phys. Rev. E 81 011602
[9] Goldenfeld N, Athreya P, Dantzig J A 2005 Phys. Rev. E 72 020601
[10] Gao Y J, Luo Z R, Huang C G 2013 Acta Phy. Sin. 62 50507 (in Chinese)[高英俊, 罗志荣, 黄创高 2013 62 50507]
[11] Yang T, Chen Z, Zhang J, Dong W P, Wu L 2012 Chin. Phys. Lett. 29 078103
[12] Gao Y J, Luo Z R, Zhang S Y, Huang C G 2010 Acta Metall. Sin. 46 1473 (in Chinese)[高英俊, 罗志荣, 张少义, 黄创高 2010 金属学报 46 1473]
[13] Jaatinen A, Ala-Nissila T 2010 J. Phys: Condens. Matter. 22 205402
[14] Chen L Q, Shen J 1998 Comput Phys. Commun. 108 147
[15] Hirouchi T, Takaki T, Tomita Y 2009 Comput. Mater. Sci. 44 1192
[16] Song R N, Zhu W, Liu E K 2012 Acta Phy. Sin. 61 27501 (in Chinese) [宋瑞宁, 朱伟, 刘恩克 2012 61 27501]
[17] Yang T, Chen Z, Dong W P 2011 Acta Metall. Sin. 47 1301 (in Chinese)[杨涛, 陈铮, 董卫平 2011 金属学报 47 1301]
[18] L W, Chen J F, He Q Y, Pan Z L, Wang T 2011 Chin. Phys. B 20 026101
-
[1] Elder K R, Provatas N, Berry J, Stefanovic P 2007 Phys. Rev. B 75 064107
[2] Elder K R, Katakowski M, Haataja M 2001 Phys. Rev. Lett. 88 245701
[3] Jaatinen A, Ala-Nissila T 2010 Phys. Rev. E 82 061602
[4] Jaatinen A, Achim C V, Elder K R 2009 Phys. Rev. E 80 031602
[5] Wu K A, Adland A, Karma A 2010 Phys. Rev. E 81 061601
[6] Greenwood M, Provatas N, Rottler J 2010 Phys. Rev. lett. 105 045702
[7] Greenwood M, Rottler J, Provatas N 2011 Phys. Rev. E 83 031601
[8] Elder K R, Huang Z F, Provatas N 2010 Phys. Rev. E 81 011602
[9] Goldenfeld N, Athreya P, Dantzig J A 2005 Phys. Rev. E 72 020601
[10] Gao Y J, Luo Z R, Huang C G 2013 Acta Phy. Sin. 62 50507 (in Chinese)[高英俊, 罗志荣, 黄创高 2013 62 50507]
[11] Yang T, Chen Z, Zhang J, Dong W P, Wu L 2012 Chin. Phys. Lett. 29 078103
[12] Gao Y J, Luo Z R, Zhang S Y, Huang C G 2010 Acta Metall. Sin. 46 1473 (in Chinese)[高英俊, 罗志荣, 张少义, 黄创高 2010 金属学报 46 1473]
[13] Jaatinen A, Ala-Nissila T 2010 J. Phys: Condens. Matter. 22 205402
[14] Chen L Q, Shen J 1998 Comput Phys. Commun. 108 147
[15] Hirouchi T, Takaki T, Tomita Y 2009 Comput. Mater. Sci. 44 1192
[16] Song R N, Zhu W, Liu E K 2012 Acta Phy. Sin. 61 27501 (in Chinese) [宋瑞宁, 朱伟, 刘恩克 2012 61 27501]
[17] Yang T, Chen Z, Dong W P 2011 Acta Metall. Sin. 47 1301 (in Chinese)[杨涛, 陈铮, 董卫平 2011 金属学报 47 1301]
[18] L W, Chen J F, He Q Y, Pan Z L, Wang T 2011 Chin. Phys. B 20 026101
计量
- 文章访问数: 5912
- PDF下载量: 863
- 被引次数: 0