搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒介质尺度效应的抗剪试验及物理机理分析

房营光

引用本文:
Citation:

颗粒介质尺度效应的抗剪试验及物理机理分析

房营光

Shear test and physical mechanism analysis on size effect of granular media

Fang Ying-Guang
PDF
导出引用
  • 针对颗粒介质力学特性的颗粒尺度效应研究,选用土矿物颗粒制备不同颗粒尺度的抗剪试样,进行一系列直剪快剪和三轴抗剪试验,测得了不同颗粒粒径和体分比试样的变形曲线及剪应力强度;基于颗粒间微观作用力与重力比值和胞元体模型,首次从微观和细观角度解释颗粒尺度效应的物理机理. 结果表明,随着介质中粗颗粒的比例增加和粒径减小,介质变形特性增强,剪应力强度也随之提高;体分比对变形和强度特性的影响比粒径的影响更加显著. 基于介质特性尺度效应物理机理分析,提出衡量介质颗粒聚集和摩擦效应的微重比判别参数以及应变梯度和变形协调微裂纹引起颗粒尺度效应的细观机理解释;文中提出的胞元体模型大大减少了颗粒物质体系的计算自由度,为工业和工程设计的计算建模提供一种可行途径.
    Shear test samples of different grain sizes are prepared by using mineral particles of soil, and a series of tests of quick direct shear and tri-axial shear are performed to study the size effect of granular media. Deformation curves and shear stress strength are given of test samples with particles of different size and volume fraction. On the basis of the ratio of micro-acting forces between particles to gravity and the cell element model, physical mechanism of grain size effect is, for the first time as far as we know, explained on the micro-level and mecro-level respectively. Test results show that the deformation characteristic of granular media is enhanced and its shear stress strength increases with increasing volume fraction and decreasing of particle size, and the effect of volume fraction on the deformation characteristics and strength is more notable than that of grain size. According to mechanism analysis on size effect, parameter ratio of micro-acting forces to gravity is suggested to assess aggregation and friction effects of particles in the media, and mecro-mechanism is interpreted as strain gradient and micro-cracks of deformation coordination leading to grain size effect. The cell element model presented in this paper can greatly reduce the degrees of freedom of granular media and provides an available way for calculation modeling in industry and engineering design.
    • 基金项目: 亚热带建筑科学国家重点实验室自主研究(批准号:2012ZA04)资助的课题.
    • Funds: Project supported by State Key Laboratory of Subtropical Building Science, South China University of Technology (Grant No. 2012ZA04).
    [1]

    Conway S L, Shinbrot T, Glasser B J 2004 Nature 431 433

    [2]

    Zhou J, Long S, Wang M Q, Dinsmore A D 2006 Science 312 1631

    [3]

    Corwin E I, Jaeger H M, Nagel S R 2005 Nature 435 1075

    [4]

    Zuriguel I, Mullin T 2008 Proc. R. Soc. A 8 99

    [5]

    Sun Q C, Wang G Q 2009 An introduction to the mechanics of granular matter (Beijing: Science press) p1 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论(北京: 科学出版) 第1页]

    [6]

    Zhao C G, Zhang X D, Guo X 2006 Adv. in Mech. 36 611 (in Chinese) [赵成刚, 张雪东, 郭璇 2006 力学进展 36 611]

    [7]

    Yao Y P, Hou W 2009 Rock and Soil Mech 30 2881 (in Chinese) [姚仰平, 侯伟 2009 岩土力学 30 2881]

    [8]

    Campbell C S 2006 Technology 162 208

    [9]

    Ghiabi H, Selvadurai 2009 Int. J. Geomech. 9 1

    [10]

    Yuan X X, Li L S, Wen P P, Shi Q F, Zheng N 2013 Chin. Phys. Lett. 30 014501

    [11]

    Lu C H, Shi Q F, Yang L, Sun G 2008 Chin. Phys. Lett. 25 2542

    [12]

    Abdul Q, Madad A S, Saeed A K 2013 Chin. Phys. B 22 058301

    [13]

    Abdul Q, Shi Q F, Liang X W, Sun G 2010 Chin. Phys. B 19 034601

    [14]

    Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819 (in Chinese) [赵永志, 江茂强, 徐平, 郑津洋 2009 58 1819]

    [15]

    Yi C H, Mu Q S, Miao T D 2009 Acta Phys. Sin. 58 7750 (in Chinese) [宜晨虹, 慕青松, 苗天德 2009 58 7750]

    [16]

    Zsaki A M 2009 Comp and Geotech. 36 568

    [17]

    Majmudar T S, Sperl M, Luding S, Behringer R P 2007 Phys. Rev. Lett. 98 058001

    [18]

    Jop P, Forterre Y, Pouliquen O 2006 Nature 441 727

    [19]

    Zhang Q, Hou M Y 2012 Acta Phys. Sin. 61 244504 (in Chinese) [张祺, 厚美瑛 2012 61 244504]

    [20]

    Inam A, Ishikawa T, Miura S 2012 Soils and Found. 52 465

    [21]

    Ren J, Shen J, Lu S C 2005 Science and technology of particle dispersing (Beijing: Chemical industry press) p66 and p103 (in Chinese) [任俊, 沈健, 卢寿慈 2005 颗粒分散科学与技术(北京: 化学工业出版社)第66页, 103页]

  • [1]

    Conway S L, Shinbrot T, Glasser B J 2004 Nature 431 433

    [2]

    Zhou J, Long S, Wang M Q, Dinsmore A D 2006 Science 312 1631

    [3]

    Corwin E I, Jaeger H M, Nagel S R 2005 Nature 435 1075

    [4]

    Zuriguel I, Mullin T 2008 Proc. R. Soc. A 8 99

    [5]

    Sun Q C, Wang G Q 2009 An introduction to the mechanics of granular matter (Beijing: Science press) p1 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论(北京: 科学出版) 第1页]

    [6]

    Zhao C G, Zhang X D, Guo X 2006 Adv. in Mech. 36 611 (in Chinese) [赵成刚, 张雪东, 郭璇 2006 力学进展 36 611]

    [7]

    Yao Y P, Hou W 2009 Rock and Soil Mech 30 2881 (in Chinese) [姚仰平, 侯伟 2009 岩土力学 30 2881]

    [8]

    Campbell C S 2006 Technology 162 208

    [9]

    Ghiabi H, Selvadurai 2009 Int. J. Geomech. 9 1

    [10]

    Yuan X X, Li L S, Wen P P, Shi Q F, Zheng N 2013 Chin. Phys. Lett. 30 014501

    [11]

    Lu C H, Shi Q F, Yang L, Sun G 2008 Chin. Phys. Lett. 25 2542

    [12]

    Abdul Q, Madad A S, Saeed A K 2013 Chin. Phys. B 22 058301

    [13]

    Abdul Q, Shi Q F, Liang X W, Sun G 2010 Chin. Phys. B 19 034601

    [14]

    Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819 (in Chinese) [赵永志, 江茂强, 徐平, 郑津洋 2009 58 1819]

    [15]

    Yi C H, Mu Q S, Miao T D 2009 Acta Phys. Sin. 58 7750 (in Chinese) [宜晨虹, 慕青松, 苗天德 2009 58 7750]

    [16]

    Zsaki A M 2009 Comp and Geotech. 36 568

    [17]

    Majmudar T S, Sperl M, Luding S, Behringer R P 2007 Phys. Rev. Lett. 98 058001

    [18]

    Jop P, Forterre Y, Pouliquen O 2006 Nature 441 727

    [19]

    Zhang Q, Hou M Y 2012 Acta Phys. Sin. 61 244504 (in Chinese) [张祺, 厚美瑛 2012 61 244504]

    [20]

    Inam A, Ishikawa T, Miura S 2012 Soils and Found. 52 465

    [21]

    Ren J, Shen J, Lu S C 2005 Science and technology of particle dispersing (Beijing: Chemical industry press) p66 and p103 (in Chinese) [任俊, 沈健, 卢寿慈 2005 颗粒分散科学与技术(北京: 化学工业出版社)第66页, 103页]

  • [1] 夏文飞, 陈剑锋, 龙利, 李志远. 金纳米双球系统的高灵敏光学传感与其消光系数及局域场增强之关联.  , 2021, 70(9): 097301. doi: 10.7498/aps.70.20210231
    [2] 陈志鹏, 於文静, 高雷. 非局域颗粒复合介质的相干完美吸收效应.  , 2019, 68(5): 051101. doi: 10.7498/aps.68.20182108
    [3] 金鑫鑫, 金峰, 刘宁, 孙其诚. 准静态颗粒介质的弹性势能弛豫分析.  , 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [4] 刘汉涛, 江山, 王艳华, 王婵娟, 李海桥. 溶解椭圆颗粒沉降的介观尺度数值模拟.  , 2015, 64(11): 114401. doi: 10.7498/aps.64.114401
    [5] 杨旻昱, 宋建军, 张静, 唐召唤, 张鹤鸣, 胡辉勇. 氮化硅膜致小尺寸金属氧化物半导体晶体管沟道单轴应变物理机理.  , 2015, 64(23): 238502. doi: 10.7498/aps.64.238502
    [6] 孙其诚. 颗粒介质的结构及热力学.  , 2015, 64(7): 076101. doi: 10.7498/aps.64.076101
    [7] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫.  , 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [8] 季顺迎, 李鹏飞, 陈晓东. 冲击荷载下颗粒物质缓冲性能的试验研究.  , 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [9] 张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛. 直剪颗粒体系声波探测.  , 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [10] 张祺, 厚美瑛. 直剪颗粒体系的尺寸效应研究.  , 2012, 61(24): 244504. doi: 10.7498/aps.61.244504
    [11] 钱祖文. 颗粒介质中的粘滞系数.  , 2012, 61(13): 134301. doi: 10.7498/aps.61.134301
    [12] 吴亚敏, 陈国庆. 梯度颗粒复合介质的光学双稳.  , 2010, 59(1): 592-596. doi: 10.7498/aps.59.592
    [13] 吴亚敏, 陈国庆. 带壳颗粒复合介质光学双稳的温度效应.  , 2009, 58(3): 2056-2060. doi: 10.7498/aps.58.2056
    [14] 彭政, 陆坤权, 厚美瑛. 阻塞态颗粒介质的慢速阻力.  , 2009, 58(9): 6566-6572. doi: 10.7498/aps.58.6566
    [15] 宜晨虹, 慕青松, 苗天德. 重力作用下颗粒介质应力链的离散元模拟.  , 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [16] 张权义, 彭 政, 何 润, 刘 锐, 陆坤权, 厚美瑛. 运动物体在颗粒介质中的阻力形式.  , 2007, 56(8): 4708-4712. doi: 10.7498/aps.56.4708
    [17] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应.  , 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [18] 彭 政, 厚美瑛, 史庆藩, 陆坤权. 颗粒介质的离散态特性研究.  , 2007, 56(2): 1195-1202. doi: 10.7498/aps.56.1195
    [19] 苗天德, 宜晨虹, 齐艳丽, 慕青松, 刘 源. 集中力作用下球形颗粒六角密排堆积体的传力研究.  , 2007, 56(8): 4713-4721. doi: 10.7498/aps.56.4713
    [20] 陆兴中, 高 雷. 颗粒复合介质在高温下的光学双稳特性.  , 2004, 53(12): 4373-4377. doi: 10.7498/aps.53.4373
计量
  • 文章访问数:  6749
  • PDF下载量:  2231
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-31
  • 修回日期:  2013-11-04
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map