搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运动目标辐射声场干涉结构映射域特征研究

林旺生 梁国龙 王燕 付进 张光普

引用本文:
Citation:

运动目标辐射声场干涉结构映射域特征研究

林旺生, 梁国龙, 王燕, 付进, 张光普

Characteristics of mapping domain of the acoustic field interference structures radiated by a moving target

Lin Wang-Sheng, Liang Guo-Long, Wang Yan, Fu Jin, Zhang Guang-Pu
PDF
导出引用
  • 浅海低频声场呈稳定而显著的干涉特征,并蕴含声源状态和波导特性等信息. 本文研究运动目标辐射声场干涉结构的简化映射以及映射域能量分布对目标运动状态的指示特征. 理论分析了声压场和矢量声场空(时)频干涉谱图的二维傅里叶变换映射特征,推导了匀速运动目标时频干涉谱图映射域能量脊斜率与波导不变量以及距变率、航向角的关系式,证明了映射域脊斜率符号、脊斜率绝对值变化等对目标来袭或远离以及目标威胁程度的指示,并进行了数值仿真和海上试验研究. 实测结果与理论、仿真分析有较好的一致性. 研究结果表明:二维傅里叶变换可将声压场和矢量场时(空)频谱图干涉结构简化,匀速运动目标辐射声场干涉结构映射域的能谱脊斜率、距变率、航向角与波导不变量有解析关系式,声强谱、动能密度谱、声强流谱等声场干涉结构经映射后更为一致,映射域脊能简明的指示目标运动状态和威胁程度.
    In shallow water exist the stable and significant interference characteristics of low frequency sound propagation, which contain the information of the sound source state and waveguide peculiarity. A simplified mapping method for describing the scalar and vector sound field interference structure radiated by a moving target, and an indicatory mechanism of the target state implicated in the energy distribution of the mapping domain are investigated in this paper. The mapping characteristics of two-dimensional Fourier transform of the vector sound field time (space) frequency interference spectrum are analyzed theoretically. Relations among waveguide invariant, range-rate, heading angle, and energy ridge slope of the mapping domain for time-frequency interference spectrum produced by a uniformly moving target are derived. Indication of target attacking or moving away, and the degree of threatening through symbols or the absolute value change of mapping domain’s ridge slope are demonstrated. Then numerical simulation and sea trial research are carried out. Experimental results with theoretical analysis and simulation results are in good agreement with each other. Research results show that the scalar and vector field time (space) frequency interference structure can be simplified by the two-dimensional Fourier transform. The mapping domain ridges, range-rate, heading angle and waveguide invariant show an analytic relationship among them. Variation embodied in the form of scalar and vector field interference structure obtained after mapping are more consistent with each other. The ridge of mapping domain can indicate the moving state of target concisely.
    • 基金项目: 国家自然科学基金(批准号:51279043,61201411,51209059,51009042)、水声技术重点实验室基金(批准号:9140C200203110C2003,9140C200802110C2001)和黑龙江省普通高等学校青年学术骨干支持计划(批准号:1253G019)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51279043, 61201411, 51209059, 51009042), the Foundation of Science and Technology on Underwater Acoustic Laboratory (Grant Nos. 9140C200203110C2003, 9140C200802110 C2001), the Youth Scholar Backbone Supporting Plan for Colleges and Universities of Heilongjiang, China (Grant No. 1253G019).
    [1]

    Kuperman W A, Song H C 2012 AIP Conference Proceedings of Advances in Ocean Acoustics Beijing, China, May 1–3, 2012 p69

    [2]

    Zhang R H, Li Z L, Peng Z H, Li F H 2012 AIP Conference Proceedings of Advances in Ocean Acoustics Beijing, China, May 1–3, 2012 p16

    [3]

    Li Q H 2012 AIP Conference Proceedings of Advances in Ocean Acoustics Beijing, China, May 1–3, 2012 p83

    [4]

    Brekhovskikh L M, Lysanov Y P 2002 Fundamentals of Ocean Acoustics (New York: Springer-Verlag)

    [5]

    Gershman S G, Tuzhilkin Yu I 1965 Sov. Phys. Acoust. 1 34

    [6]

    Weston D E 1972 J. Sound. Vib. 21 57

    [7]

    Chuprov S D 1982 Interference structure of a Sound Field in a Layered Ocean, in Brekhovskih L M, Andreevoi L B (ed) Ocean Acoustics. Current State pp71–91

    [8]

    Burenkov S V 1989 Soviet Physical Acoustics 35 465

    [9]

    Grachev C A 1993 Soviet Physical Acoustics 39 33

    [10]

    Kuz’kin C A 1999 Soviet Physical Acoustics 45 224

    [11]

    D’Spain G L, Kuperman W A 1999 J. Acoust. Soc. Am. 106 2454

    [12]

    D’Spain G L, Williams D P, Kuperman W A, 2002 AIP Conference Proceedings of Ocean acoustic interference phenomena and signal processing San Francisco, California, May 1–3, 2002 p171

    [13]

    Li Q H, Wang L, Wei C H, Li Y, Ma X J, Yu H C 2011 Acta Acustica 36 253 (in Chinese) [李启虎, 王磊, 卫翀华, 李嶷, 马雪洁, 于海春 2011 声学学报 36 253]

    [14]

    Dall’Osto D R, Dahl P H, Chol J W 2012 J. Acoust. Soc. Am. 127 2023

    [15]

    Yu Y, Hui J Y, Zhao A B, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超 2008 57 5742]

    [16]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2009 Acta Phys. Sin. 58 6335 (in Chinese) [余赟, 惠俊英, 陈阳, 孙国仓, 滕超 2009 58 6335]

    [17]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2012 Acta Phys. Sin. 61 054303 (in Chinese) [余赟, 惠俊英, 陈阳, 惠娟, 殷敬伟 2012 61 054303]

    [18]

    Rakotonariv S T, Kuperman W A 2012 J. Acoust. Soc. Am. 132 2218

    [19]

    Ren Q Y, Hermand J P 2013 J. Acoust. Soc. Am. 133 82

    [20]

    Lin W S 2013 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [林旺生 2013 博士学位论文(哈尔滨: 哈尔滨工程大学)]

    [21]

    Lin W S, Liang G L, Fu J, Zhang G P 2013 Acta Phys. Sin. 62 4301 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2013 62 4301]

    [22]

    Tao H L, Krolik J 2007 Proceedings of IEEE Oceans Aberdeen, Scotland, June 18–21, 2007 p1

    [23]

    Turgut A, Orr M 2010 J. Acoust. Soc. Am. 127 73

    [24]

    Yu Y, Hui J Y, Ying J W, Hui J, Wang Z J 2011 Acta Acustica 36 258 (in Chinese) [余赟, 惠俊英, 殷敬伟, 惠娟, 王自娟 2011 声学学报 36 258]

    [25]

    Yang T C 2003 J. Acoust. Soc. Am. 113 1342

    [26]

    Rouseff D, Spindel R C 2002 AIP Conference Proceedings of Ocean acoustic interference phenomena and signal processing San Francisco, California, May 1–3, 2002 p137

    [27]

    Baggeroer A B 2002 AIP Conference Proceedings of Ocean acoustic interference phenomena and signal processing San Francisco, California, May 1–3, 2002 p151

    [28]

    An L, Wang Z Q, Lu J R 2008 Journal of Electronics & Information Technology 30 2930 (in Chinese) [安良, 王志强, 陆佶人 2008 电子与信息学报 30 2930]

  • [1]

    Kuperman W A, Song H C 2012 AIP Conference Proceedings of Advances in Ocean Acoustics Beijing, China, May 1–3, 2012 p69

    [2]

    Zhang R H, Li Z L, Peng Z H, Li F H 2012 AIP Conference Proceedings of Advances in Ocean Acoustics Beijing, China, May 1–3, 2012 p16

    [3]

    Li Q H 2012 AIP Conference Proceedings of Advances in Ocean Acoustics Beijing, China, May 1–3, 2012 p83

    [4]

    Brekhovskikh L M, Lysanov Y P 2002 Fundamentals of Ocean Acoustics (New York: Springer-Verlag)

    [5]

    Gershman S G, Tuzhilkin Yu I 1965 Sov. Phys. Acoust. 1 34

    [6]

    Weston D E 1972 J. Sound. Vib. 21 57

    [7]

    Chuprov S D 1982 Interference structure of a Sound Field in a Layered Ocean, in Brekhovskih L M, Andreevoi L B (ed) Ocean Acoustics. Current State pp71–91

    [8]

    Burenkov S V 1989 Soviet Physical Acoustics 35 465

    [9]

    Grachev C A 1993 Soviet Physical Acoustics 39 33

    [10]

    Kuz’kin C A 1999 Soviet Physical Acoustics 45 224

    [11]

    D’Spain G L, Kuperman W A 1999 J. Acoust. Soc. Am. 106 2454

    [12]

    D’Spain G L, Williams D P, Kuperman W A, 2002 AIP Conference Proceedings of Ocean acoustic interference phenomena and signal processing San Francisco, California, May 1–3, 2002 p171

    [13]

    Li Q H, Wang L, Wei C H, Li Y, Ma X J, Yu H C 2011 Acta Acustica 36 253 (in Chinese) [李启虎, 王磊, 卫翀华, 李嶷, 马雪洁, 于海春 2011 声学学报 36 253]

    [14]

    Dall’Osto D R, Dahl P H, Chol J W 2012 J. Acoust. Soc. Am. 127 2023

    [15]

    Yu Y, Hui J Y, Zhao A B, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超 2008 57 5742]

    [16]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2009 Acta Phys. Sin. 58 6335 (in Chinese) [余赟, 惠俊英, 陈阳, 孙国仓, 滕超 2009 58 6335]

    [17]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2012 Acta Phys. Sin. 61 054303 (in Chinese) [余赟, 惠俊英, 陈阳, 惠娟, 殷敬伟 2012 61 054303]

    [18]

    Rakotonariv S T, Kuperman W A 2012 J. Acoust. Soc. Am. 132 2218

    [19]

    Ren Q Y, Hermand J P 2013 J. Acoust. Soc. Am. 133 82

    [20]

    Lin W S 2013 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [林旺生 2013 博士学位论文(哈尔滨: 哈尔滨工程大学)]

    [21]

    Lin W S, Liang G L, Fu J, Zhang G P 2013 Acta Phys. Sin. 62 4301 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2013 62 4301]

    [22]

    Tao H L, Krolik J 2007 Proceedings of IEEE Oceans Aberdeen, Scotland, June 18–21, 2007 p1

    [23]

    Turgut A, Orr M 2010 J. Acoust. Soc. Am. 127 73

    [24]

    Yu Y, Hui J Y, Ying J W, Hui J, Wang Z J 2011 Acta Acustica 36 258 (in Chinese) [余赟, 惠俊英, 殷敬伟, 惠娟, 王自娟 2011 声学学报 36 258]

    [25]

    Yang T C 2003 J. Acoust. Soc. Am. 113 1342

    [26]

    Rouseff D, Spindel R C 2002 AIP Conference Proceedings of Ocean acoustic interference phenomena and signal processing San Francisco, California, May 1–3, 2002 p137

    [27]

    Baggeroer A B 2002 AIP Conference Proceedings of Ocean acoustic interference phenomena and signal processing San Francisco, California, May 1–3, 2002 p151

    [28]

    An L, Wang Z Q, Lu J R 2008 Journal of Electronics & Information Technology 30 2930 (in Chinese) [安良, 王志强, 陆佶人 2008 电子与信息学报 30 2930]

  • [1] 李永飞, 郭瑞明, 赵航芳. 浅海内波环境下声场干涉条纹的稀疏重建.  , 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932
    [2] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用研究.  , 2020, (): 004300. doi: 10.7498/aps.69.20191652
    [3] 卢曼昕, 邓文基. 一维二元复式晶格的拓扑不变量与边缘态.  , 2019, 68(12): 120301. doi: 10.7498/aps.68.20190214
    [4] 宋文华, 王宁, 高大治, 王好忠, 屈科. 波导不变量谱值及其分离方法.  , 2017, 66(11): 114301. doi: 10.7498/aps.66.114301
    [5] 郭晓乐, 杨坤德, 马远良, 杨秋龙. 一种基于简正波模态消频散变换的声源距离深度估计方法.  , 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [6] 戚聿波, 周士弘, 张仁和, 任云. 一种基于β-warping变换算子的被动声源距离估计方法.  , 2015, 64(7): 074301. doi: 10.7498/aps.64.074301
    [7] 鹿力成, 马力. 基于Warping变换的波导时频分析.  , 2015, 64(2): 024305. doi: 10.7498/aps.64.024305
    [8] 宋文华, 胡涛, 郭圣明, 马力. 浅海内波影响下的波导不变量变化特性分析.  , 2014, 63(19): 194303. doi: 10.7498/aps.63.194303
    [9] 林旺生, 梁国龙, 付进, 张光普. 浅海矢量声场干涉结构形成机理及试验研究.  , 2013, 62(14): 144301. doi: 10.7498/aps.62.144301
    [10] 余赟, 惠俊英, 陈阳, 惠娟, 殷敬伟. 基于时空滤波理论的低频声场干涉结构研究.  , 2012, 61(5): 054303. doi: 10.7498/aps.61.054303
    [11] 梅凤翔, 蔡建乐. 广义Birkhoff系统的积分不变量.  , 2008, 57(8): 4657-4659. doi: 10.7498/aps.57.4657
    [12] 张 毅. Birkhoff系统的一类新型绝热不变量.  , 2006, 55(8): 3833-3837. doi: 10.7498/aps.55.3833
    [13] 马中骐, 许伯威. 精确的量子化条件和不变量.  , 2006, 55(4): 1571-1579. doi: 10.7498/aps.55.1571
    [14] 宋立平, 郭奇志, 谭维翰. 紧邻激光器第二阈值的Lorenz映像混沌行为的“准不变量V”分析.  , 2004, 53(1): 119-124. doi: 10.7498/aps.53.119
    [15] 尤云祥, 缪国平. 三维可穿透目标远场声波反演的一种指示器样本方法.  , 2002, 51(9): 2038-2051. doi: 10.7498/aps.51.2038
    [16] 乔永芬, 李仁杰, 赵淑红. 高维增广相空间中广义力学系统的对称性和不变量.  , 2001, 50(5): 811-815. doi: 10.7498/aps.50.811
    [17] 符 建, 高孝纯, 许晶波, 邹旭波. 与不变量有关的幺正变换方法和含时均匀电场中的量子Dirac场的演化.  , 1999, 48(6): 1011-1022. doi: 10.7498/aps.48.1011
    [18] 高孝纯, 高隽, 符建. 量子不变量理论与离子在联合量子阱中的运动.  , 1996, 45(6): 912-923. doi: 10.7498/aps.45.912
    [19] 郭东耀, 郭石杉. cis-[PtDMBA(ClCH2CO2)2]晶体双相角结构不变量的符号分布.  , 1990, 39(7): 158-162. doi: 10.7498/aps.39.158-2
    [20] 孙宏林, 张纲, 郭东耀. 双波长双相角结构不变量的比邻原理.  , 1989, 38(5): 824-828. doi: 10.7498/aps.38.824
计量
  • 文章访问数:  6559
  • PDF下载量:  621
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-26
  • 修回日期:  2013-11-04
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map