搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的双曲等效法用于双站合成孔径雷达前视成像

马超 顾红 苏卫民 李传中

引用本文:
Citation:

改进的双曲等效法用于双站合成孔径雷达前视成像

马超, 顾红, 苏卫民, 李传中

Focusing bistatic forward-looking synthetic aperture radar based on modified hyperbolic approximating

Ma Chao, Gu Hong, Su Wei-Min, Li Chuan-Zhong
PDF
导出引用
  • 双站合成孔径雷达(SAR)前视成像有着很多的潜在应用,比如在能见度很低的天气实现飞机的导航和盲降,提高飞机飞行的安全度等. 然而实现双站SAR前视成像的难点在于其距离历程的双根式性,直接采用驻定相位原理对其分解将得到复杂的解析式,从而后续算法的推导变得困难. 现有的双曲等效法可以将双根式距离历程等效为单根式,但由于该方法为距离历程的二阶近似,当用于双站SAR 前视成像时,由于其较大的前视角,未完全等效的距离历程高次项造成的误差已经超出可以接受的范围. 针对以上问题,本文首先提出了一种改进的双曲等效法,该方法通过引入新的补偿变量来提高距离历程的等效精度;然后在此基础上推导回波信号的二维频谱解析式,并给出了一种适用于双站SAR前视成像的距离多普勒算法;最后通过仿真实验,将原双曲等效法与改进方法的等效误差以及成像结果做对比,验证了本文算法的有效性和优越性.
    The conventional monostatic synthetic aperture radar (SAR) shows a limitation if a forward-looking geometry is used. However, bistatic forward-looking SAR gives a good solution, providing a high resolution image in the flight path direction. Due to the fact that the range history of bistatic SAR is a double square root, classical imaging algorithm cannot be applied to the bistatic SAR directly. Also it is difficult to deduce imaging algorithm from double square root directly. The hyperbolic approximating method can transform double square root into single one, when being used in forward-looking geometry, and the high order term error is obvious and cannot be ignored. In this paper, we propose a modified hyperbolic approximating method, which makes a cubic term approximation and improves the precision, then we apply the new method to bistatic forward-looking SAR and deduce the bistatic point spectrum. Based on the spectrum, a modified range Doppler algorithm is proposed for focusing bistatic forward-looking SAR. Finally, numerical simulation is used to compare the original hyperbolic approximating method with the modified one for veridating the proposed algorithm and processing approach.
    • 基金项目: 教育部博士点基金(批准号:20113219110018)和部预研基金(批准号:9140A07010713BQ02025)资助的课题.
    • Funds: Project supported by the Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 20113219110018), and the Ministry Pre-research Foundation (Grant No. 9140A07010713BQ02025).
    [1]

    Klare J, Walterscheid I, Brenner A R, Ender J H G 2006 IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS) Denver, July 31, 2006 p1208

    [2]

    Zhang Y M, Wang Y H, Zhao C F 2010 Chin. Phys. B 19 084103

    [3]

    Wang Y H, Guo L X, Wu Q 2006 Chin. Phys. B 15 1755

    [4]

    Li J C, Huang B, Peng Y X 2012 Acta Phys. Sin. 61 189501 (in Chinese) [李金才, 黄斌, 彭宇行 2012 61 189501]

    [5]

    Ji W J, Tong C M 2013 Chin. Phys. B 22 020301

    [6]

    Ai W H, Yan W, Zhao X B, Liu W J, Ma S 2013 Acta Phys. Sin. 62 068401 (in Chinese) [艾未华, 严卫, 赵现斌, 刘文俊, 马烁 2013 62 068401]

    [7]

    Jiang Z H, Huang S X, Shi H Q, Zhang W, Wang B 2011 Acta Phys. Sin. 60 108402 (in Chinese) [姜祝辉, 黄思训, 石汉青, 张伟, 王彪 2011 60 108402]

    [8]

    Loehner A K 1998 IEE Proc. Radar Sonar and Navig. 145 128

    [9]

    Qiu X, Hu D, Ding C 2008 IEEE Geosci. Remote Sens. Lett. 5 735

    [10]

    Wu J, Li Z, Huang Y, Yang J 2013 IEEE Geosci. Remote Sens. Lett. PP(99) 1

    [11]

    Wu J, Huang Y, Yang J 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) Vancouver BC, July 24–29, 2011 p1223

    [12]

    Espeter T, Walterscheid I, Klare J, Brenner A R 2011 Proceedings International Radar Symposium (IRS) Leipzig, September 7–9, 2011 p41

    [13]

    Wu J, Yang J, Huang Y, Yang H 2011 IEEE Radar Conference (RADAR) Kansas, May 23–27, 2011 p1036

    [14]

    Wang R, Loffeld O, Nies H, Peters V 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) Honolulu, July 25–30, 2010 p4091

    [15]

    Li J, Zhang S, Chang J 2012 International Workshop on Microwave and Millimeter Wave Circuits and System Technology (MMWCST) Chengdu, China, April 19–20, 2011 p1

    [16]

    Wang H, Yang J, Huang Y, Wu J 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar Xi’an, China, October 26–30, 2009 p955

    [17]

    Bamler R, Meyer F, Liebhart W 2007 IEEE Trans. Geosci. Remote Sens. 45 3350

    [18]

    Qiu X, Hu D, Ding C 2006 CIE’06. International Conference on Radar Shanghai, China, October 16–19, 2006 p1

    [19]

    Xiong T 2012 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese) [熊涛 2012 博士学位论文 (西安: 西安电子科技大学)]

  • [1]

    Klare J, Walterscheid I, Brenner A R, Ender J H G 2006 IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS) Denver, July 31, 2006 p1208

    [2]

    Zhang Y M, Wang Y H, Zhao C F 2010 Chin. Phys. B 19 084103

    [3]

    Wang Y H, Guo L X, Wu Q 2006 Chin. Phys. B 15 1755

    [4]

    Li J C, Huang B, Peng Y X 2012 Acta Phys. Sin. 61 189501 (in Chinese) [李金才, 黄斌, 彭宇行 2012 61 189501]

    [5]

    Ji W J, Tong C M 2013 Chin. Phys. B 22 020301

    [6]

    Ai W H, Yan W, Zhao X B, Liu W J, Ma S 2013 Acta Phys. Sin. 62 068401 (in Chinese) [艾未华, 严卫, 赵现斌, 刘文俊, 马烁 2013 62 068401]

    [7]

    Jiang Z H, Huang S X, Shi H Q, Zhang W, Wang B 2011 Acta Phys. Sin. 60 108402 (in Chinese) [姜祝辉, 黄思训, 石汉青, 张伟, 王彪 2011 60 108402]

    [8]

    Loehner A K 1998 IEE Proc. Radar Sonar and Navig. 145 128

    [9]

    Qiu X, Hu D, Ding C 2008 IEEE Geosci. Remote Sens. Lett. 5 735

    [10]

    Wu J, Li Z, Huang Y, Yang J 2013 IEEE Geosci. Remote Sens. Lett. PP(99) 1

    [11]

    Wu J, Huang Y, Yang J 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) Vancouver BC, July 24–29, 2011 p1223

    [12]

    Espeter T, Walterscheid I, Klare J, Brenner A R 2011 Proceedings International Radar Symposium (IRS) Leipzig, September 7–9, 2011 p41

    [13]

    Wu J, Yang J, Huang Y, Yang H 2011 IEEE Radar Conference (RADAR) Kansas, May 23–27, 2011 p1036

    [14]

    Wang R, Loffeld O, Nies H, Peters V 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) Honolulu, July 25–30, 2010 p4091

    [15]

    Li J, Zhang S, Chang J 2012 International Workshop on Microwave and Millimeter Wave Circuits and System Technology (MMWCST) Chengdu, China, April 19–20, 2011 p1

    [16]

    Wang H, Yang J, Huang Y, Wu J 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar Xi’an, China, October 26–30, 2009 p955

    [17]

    Bamler R, Meyer F, Liebhart W 2007 IEEE Trans. Geosci. Remote Sens. 45 3350

    [18]

    Qiu X, Hu D, Ding C 2006 CIE’06. International Conference on Radar Shanghai, China, October 16–19, 2006 p1

    [19]

    Xiong T 2012 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese) [熊涛 2012 博士学位论文 (西安: 西安电子科技大学)]

  • [1] 火元莲, 脱丽华, 齐永锋, 张印. 量化核最小逆双曲正弦自适应滤波算法.  , 2022, 71(22): 228401. doi: 10.7498/aps.71.20221065
    [2] 李云清, 江晨, 李颖, 徐峰, 许凯亮, 他得安, 黎仲勋. 基于多层声速模型的合成孔径超声皮质骨成像.  , 2019, 68(18): 184302. doi: 10.7498/aps.68.20190763
    [3] 王童, 童创明, 李西敏, 李昌泽. 分形粗糙面合成孔径雷达成像研究.  , 2016, 65(7): 070301. doi: 10.7498/aps.65.070301
    [4] 赵现斌, 严卫, 王迎强, 陆文, 马烁. 基于海面散射模型的全极化合成孔径雷达海洋环境探测关键技术参数设计仿真研究.  , 2014, 63(21): 218401. doi: 10.7498/aps.63.218401
    [5] 朱磊, 韩天琪, 水鹏朗, 卫建华, 顾梅花. 一种抑制合成孔径雷达图像相干斑的各向异性扩散滤波方法.  , 2014, 63(17): 179502. doi: 10.7498/aps.63.179502
    [6] 姜祝辉, 周晓中, 游小宝, 易欣, 黄为权. 合成孔径雷达反演海面风场变分模型分析.  , 2014, 63(14): 148401. doi: 10.7498/aps.63.148401
    [7] 郭宝锋, 尚朝轩, 王俊岭, 高梅国, 傅雄军. 双基地角时变下的逆合成孔径雷达越分辨单元徙动校正算法.  , 2014, 63(23): 238406. doi: 10.7498/aps.63.238406
    [8] 唐碧华, 罗亚梅, 姜云海, 陈淑琼. 双曲余弦高斯涡旋光束的远场特性研究.  , 2013, 62(13): 134202. doi: 10.7498/aps.62.134202
    [9] 艾未华, 严卫, 赵现斌, 刘文俊, 马烁. C波段机载合成孔径雷达海面风场反演新方法.  , 2013, 62(6): 068401. doi: 10.7498/aps.62.068401
    [10] 孙增国. 高分辨率合成孔径雷达图像的Gamma分布下最大后验概率降斑算法.  , 2013, 62(18): 180701. doi: 10.7498/aps.62.180701
    [11] 李金才, 黄思训, 彭宇行, 张卫民. 一种用于合成孔径雷达图像相干斑抑制的双边滤波参数配置新方法.  , 2012, 61(11): 119501. doi: 10.7498/aps.61.119501
    [12] 李金才, 黄斌, 彭宇行. 一种改进的用于合成孔径雷达图像相干斑抑制的双边滤波参数配置方法.  , 2012, 61(18): 189501. doi: 10.7498/aps.61.189501
    [13] 艾未华, 孔毅, 赵现斌. 基于小波的多极化机载合成孔径雷达海面风向反演.  , 2012, 61(14): 148403. doi: 10.7498/aps.61.148403
    [14] 赵现斌, 孔毅, 严卫, 艾未华, 刘文俊. 机载合成孔径雷达海面风场探测辐射定标精度要求研究.  , 2012, 61(14): 148404. doi: 10.7498/aps.61.148404
    [15] 姬伟杰, 童创明. 二维海面上舰船目标电磁散射及合成孔径雷达成像技术研究.  , 2012, 61(16): 160301. doi: 10.7498/aps.61.160301
    [16] 姜祝辉, 黄思训, 何然, 周晨腾. 合成孔径雷达资料反演海面风场的正则化方法研究.  , 2011, 60(6): 068401. doi: 10.7498/aps.60.068401
    [17] 姜祝辉, 黄思训, 石汉青, 张伟, 王彪. 合成孔径雷达图像反演海面风向新方法的研究.  , 2011, 60(10): 108402. doi: 10.7498/aps.60.108402
    [18] 孙增国, 韩崇昭. 基于拖尾分布的高分辨率合成孔径雷达图像建模.  , 2010, 59(2): 998-1008. doi: 10.7498/aps.59.998
    [19] 孙增国, 韩崇昭. 基于区域分类、自适应滑动窗和结构检测的合成孔径雷达图像联合降斑算法.  , 2010, 59(5): 3210-3220. doi: 10.7498/aps.59.3210
    [20] 孙增国, 韩崇昭. 基于斑点噪声的拖尾Rayleigh分布的合成孔径雷达图像最大后验概率降噪.  , 2007, 56(8): 4565-4570. doi: 10.7498/aps.56.4565
计量
  • 文章访问数:  6176
  • PDF下载量:  493
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-16
  • 修回日期:  2013-10-10
  • 刊出日期:  2014-01-05

/

返回文章
返回
Baidu
map