搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究

任舰 闫大为 顾晓峰

引用本文:
Citation:

AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究

任舰, 闫大为, 顾晓峰

Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors

Ren Jian, Yan Da-Wei, Gu Xiao-Feng
PDF
导出引用
  • 本文首先制备了与AlGaN/GaN高电子迁移率晶体管 (HEMT) 结构与特性等效的AlGaN/GaN异质结肖特基二极管, 采用步进应力测试比较了不同栅压下器件漏电流的变化情况, 然后基于电流-电压和电容-电压测试验证了退化前后漏电流的传输机理, 并使用失效分析技术光发射显微镜 (EMMI) 观测器件表面的光发射, 研究了漏电流的时间依赖退化机理. 实验结果表明: 在栅压高于某临界值后, 器件漏电流随时间开始增加, 同时伴有较大的噪声. 将极化电场引入电流与电场的依赖关系后, 器件退化前后的 log(IFT/E)与E 都遵循良好的线性关系, 表明漏电流均由电子Frenkel-Poole (FP) 发射主导. 退化后 log(IFT/E)与E 曲线斜率的减小, 以及利用EMMI在栅边缘直接观察到了与缺陷存在对应关系的热点, 证明了漏电流退化的机理是: 高电场在AlGaN层中诱发了新的缺陷, 而缺陷密度的增加导致了FP发射电流IFT的增加.
    In order to study the degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors (HEMTs), we have fabricated AlGaN/GaN heterojunction Schottky diodes having equivalent structure and characteristics to AlGaN/GaN HEMTs. Step stress tests were then performed to compare the leakage current changes at different gate voltages. The transport mechanism of leakage current before and after degradation was validated based on the current-voltage and capacitance-voltage measurements. The light emission from the device surface was examined by emission microscopy (EMMI) to investigate the time-dependent degradation of leakage current. Experimental results show that the leakage current increases with increasing time and is accompanied by a large noise when the applied gate voltage exceeds a critical value. After introducing the polarization field into the current-field dependence, log(IFT/E) exhibits a good linear relationship with E both before and after degradation, indicating that the leakage current is dominated by the Frenkel-Poole (FP) emission. The slope of log(IFT/E)-E curve decreases after degradation, and the hot spots corresponding to defects are directly observed by EMMI at the gate edge of the degraded device, suggesting that the degradation mechanism is: New defects are induced by high electric field in the AlGaN layer, and the increase of defect density leads to the increase of FP emission current.
    • 基金项目: 国家自然科学基金 (批准号: 11074280);江苏省自然科学基金(批准号: BK2012110);中央高校基本科研业务费专项资金(批准号: JUSRP51323B, JUDCF13038);江苏高校优势学科建设工程项目;江苏省六大人才高峰项目(批准号: DZXX-053)和江苏省普通高校研究生创新计划(批准号: CXLX13-740)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11074280), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012110), the Fundamental Research Funds for the Central Universities (Grant Nos. JUSRP51323B, JUDCF13038), PAPD of Jiangsu Higher Education Institutions, the Summit of the Six Top Talents Program of Jiangsu Province, China (Grant No. DZXX-053), and the Graduate Student Innovation Program for University of Jiangsu Province (Grant No. CXLX13-740).
    [1]

    Wang X W, Omair I S, Xi B, Lou X B, Richard J M 2012 Appl. Phys. Lett. 101 232109

    [2]

    Zhang Z W, Zhu C F, Fong W K, Surya C 2011 Solid-State Electronics 62 94

    [3]

    Toyoda S, Shinohara T, Kumigashira H, Oshima M, Kato Y 2012 Appl. Phys. Lett. 101 231607

    [4]

    Eastman L F, Tilak V, Smart J, Bruce M G, Eduardo M C, Dimtrov R 2001 IEEE Transactions on Electron Devices 48 479

    [5]

    Joh J, Alamo J A 2008 IEEE Electron Device Letters 29 287

    [6]

    Marcon D, Kauerauf T, Medjdoub T, Das J, Van H M 2010 IEEE IEDM San Francisco, CA Dec. 6-8, 2010 472

    [7]

    Gu W P, Hao Y, Zhang J C, Wang C, Feng Q, Ma X H 2009 Acta Phys. Sin. 58 511 (in Chinese) [谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华 2009 58 511]

    [8]

    Chang C Y, Douglas E A, Jinhyung K, Liu L 2011 IEEE Trans. Device Mater. Rel. 11 187

    [9]

    Meneghesso G, Verzellesi G, Danesin F, Francesca D, Fabiana R 2008 IEEE Trans. Device Mater. Rel. 8 332

    [10]

    Piner E, Singhal S, Rajagopal P, Therrien R, Roberts J C, Li T 2006 IEDM San Francisco, CA Dec. 11-13, 2006 411

    [11]

    Karmalkar S, Sathaiya D M 2003 Appl. Phys. Lett. 82 3976

    [12]

    Yan D W, Lu H, Cao D S 2010 Appl. Phys. Lett. 97 153503

    [13]

    Garrido J A, Jiménez A, Munoz E 1999 Phys. Status Solidi A 176 195

    [14]

    Winzer A T, Goldhahn R, Gobsch G 2005 Appl. Phys. Lett. 86 181912

    [15]

    Kurtz S R, Allerman A A, Koleske D D, Peake G M 2002 Appl. Phys. Lett. 80 4549

    [16]

    Ryuzaki D, Ishida T, Furusawa T 2003 J. Electrochem. Soc. 150 F203

    [17]

    Yeargan J R, Taylor H L 1968 J. Appl. Phys. 39 5600

    [18]

    Wang X H, Wang J H, Pang L, Chen X J, Yuan T T, Luo W J, Liu X Y 2012 Acta Phys. Sin. 61 177302 (in Chinese) [王鑫华, 王建辉, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 刘新宇 2012 61 177302]

  • [1]

    Wang X W, Omair I S, Xi B, Lou X B, Richard J M 2012 Appl. Phys. Lett. 101 232109

    [2]

    Zhang Z W, Zhu C F, Fong W K, Surya C 2011 Solid-State Electronics 62 94

    [3]

    Toyoda S, Shinohara T, Kumigashira H, Oshima M, Kato Y 2012 Appl. Phys. Lett. 101 231607

    [4]

    Eastman L F, Tilak V, Smart J, Bruce M G, Eduardo M C, Dimtrov R 2001 IEEE Transactions on Electron Devices 48 479

    [5]

    Joh J, Alamo J A 2008 IEEE Electron Device Letters 29 287

    [6]

    Marcon D, Kauerauf T, Medjdoub T, Das J, Van H M 2010 IEEE IEDM San Francisco, CA Dec. 6-8, 2010 472

    [7]

    Gu W P, Hao Y, Zhang J C, Wang C, Feng Q, Ma X H 2009 Acta Phys. Sin. 58 511 (in Chinese) [谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华 2009 58 511]

    [8]

    Chang C Y, Douglas E A, Jinhyung K, Liu L 2011 IEEE Trans. Device Mater. Rel. 11 187

    [9]

    Meneghesso G, Verzellesi G, Danesin F, Francesca D, Fabiana R 2008 IEEE Trans. Device Mater. Rel. 8 332

    [10]

    Piner E, Singhal S, Rajagopal P, Therrien R, Roberts J C, Li T 2006 IEDM San Francisco, CA Dec. 11-13, 2006 411

    [11]

    Karmalkar S, Sathaiya D M 2003 Appl. Phys. Lett. 82 3976

    [12]

    Yan D W, Lu H, Cao D S 2010 Appl. Phys. Lett. 97 153503

    [13]

    Garrido J A, Jiménez A, Munoz E 1999 Phys. Status Solidi A 176 195

    [14]

    Winzer A T, Goldhahn R, Gobsch G 2005 Appl. Phys. Lett. 86 181912

    [15]

    Kurtz S R, Allerman A A, Koleske D D, Peake G M 2002 Appl. Phys. Lett. 80 4549

    [16]

    Ryuzaki D, Ishida T, Furusawa T 2003 J. Electrochem. Soc. 150 F203

    [17]

    Yeargan J R, Taylor H L 1968 J. Appl. Phys. 39 5600

    [18]

    Wang X H, Wang J H, Pang L, Chen X J, Yuan T T, Luo W J, Liu X Y 2012 Acta Phys. Sin. 61 177302 (in Chinese) [王鑫华, 王建辉, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 刘新宇 2012 61 177302]

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响.  , 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 王帅, 葛晨, 徐祖银, 成爱强, 陈敦军. 微波GaN器件温度效应建模.  , 2024, 73(17): 177101. doi: 10.7498/aps.73.20240765
    [3] 武鹏, 李若晗, 张涛, 张进成, 郝跃. AlGaN/GaN肖特基二极管阳极后退火界面态修复技术.  , 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [4] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计.  , 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [5] 刘乃漳, 姚若河, 耿魁伟. AlGaN/GaN高电子迁移率晶体管的栅极电容模型.  , 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [6] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性.  , 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [7] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理.  , 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [8] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平. AlGaN/GaN高电子迁移率晶体管器件电离辐照损伤机理及偏置相关性研究.  , 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [9] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响.  , 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [10] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应.  , 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [11] 唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺. 1000 V p-GaN混合阳极AlGaN/GaN二极管.  , 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [12] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理.  , 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [13] 张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新. 具有p-GaN岛状埋层耐压结构的横向AlGaN/GaN高电子迁移率晶体管.  , 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [14] 李志鹏, 李晶, 孙静, 刘阳, 方进勇. 高功率微波作用下高电子迁移率晶体管的损伤机理.  , 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [15] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理.  , 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [16] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型.  , 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [17] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究.  , 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [18] 王冲, 全思, 张金凤, 郝跃, 冯倩, 陈军峰. AlGaN/GaN槽栅HEMT模拟与实验研究.  , 2009, 58(3): 1966-1970. doi: 10.7498/aps.58.1966
    [19] 魏 巍, 郝 跃, 冯 倩, 张进城, 张金凤. AlGaN/GaN场板结构高电子迁移率晶体管的场板尺寸优化分析.  , 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [20] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析.  , 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
计量
  • 文章访问数:  7503
  • PDF下载量:  729
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-03
  • 修回日期:  2013-03-31
  • 刊出日期:  2013-08-05

/

返回文章
返回
Baidu
map