-
运用含时密度泛函理论和分子动力学相结合的方法, 研究了C5分子线在强激光场中的电离激发.研究发现, 当考虑激光强度对C5分子线激发的影响时, 激光强度越强, 分子吸收的能量越多, 电离也越早, 最终电离的电子也越多, 而且沿激光极化方向的偶极矩的变化及峰值也越大. 关于激光极化方向对C5分子线激发的影响的研究表明, 当激光极化方向沿着C5分子线轴向时, 分子的电离大大增强, x方向的激光脉冲仅能激发起x方向的偶极振荡, 而y方向的激光脉冲仅能激发起y方向的偶极振荡, 而且x方向的激光脉冲激发的偶极振荡强. 研究还表明, 当激光极化方向沿着C5分子线轴向时, 尽管由于电离增强而导致C5分子线CC键振动的同步性变差, 但在两种激光极化方向情况下, C5分子线的振动模式与中性C5分子线的振动模式相同.Combining the time-dependent density functional theory with molecular dynamics of ions the excitation of the carbon wire C5 is explored. It is found that the stronger the laser intensity, the more energies are absorbed by C5 and the earlier the ionization takes place and the more electrons are emitted when considering the effect of the laser intensity on the excitation of the carbon wire C5. The study of the influence of the polarization of the laser pulse on the excitation of C5 indicates that the ionization is enhanced and the dipole moment along the laser polarization is strengthened when the laser polarization is along the molecular axis, and the x-direction polarized laser pulse can only excite the dipole oscillation along the x axis, and the y-direction polarized one can only excite Dy. Furthermore, it is found that the synchronicity of the vibration of carbon bonds changes a little due to the enhanced ionization when the laser polarization is along the molecular axis, while the vibration modes of ionized carbon wire C5 are the same as those of the neutral carbon wire C5.
-
Keywords:
- time-dependent density functional theory /
- molecular dynamics /
- ionization of molecules /
- carbon atomic wire
[1] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162
[2] Prinzbach H, Weiler A, Landenberger P, Wahl F, Wörth J, Scott T L, Gelmont M, Olevano D, Issendorff B V 2000 Nature 407 60
[3] Orden A V, Saykally R J 1998 Chem. Rev. 98 2313
[4] Massö H, Senent M L 2009 J. Phys. Chem. A 113 12404
[5] Thaddeus P, McCarthy M C 2001 Spectrochim. Acta A 57 757
[6] Maier J P, Walker G A H, Bohlender D A 2004 Astrophys. J. 602 286
[7] Senent M L, Hochlaf M 2010 Astrophys. J. 708 1452
[8] Galli G, Martin R M, Car R, Parrinello M 1989 Phys. Rev. Lett. 62 555
[9] Lu Z Y, Wang C Z, Ho K M 2000 Phys. Rev. B 61 2329
[10] Massö H, Senent M L, Rosmus P, Hochlaf M 2006 J. Chem. Phys. 124 234304
[11] Chen X R, Bai Y L, Zhou X L, Yang X D 2003 Chem. Phys. Lett. 380 330
[12] Jones R O 1999 J. Chem. Phys. 110 5189
[13] Ravagnan L, Manini N, Cinquanta E, Onida G, Sangalli D, Motta C, Devetta M, Bordoni A, Piseri P, Milani P 2009 Phys. Rev. Lett. 102 245502
[14] Cahangirov S, Topsakal M, Ciraci S 2010 Phys. Rev. B 82 195444
[15] Lang N D, Avouris P 2000 Phys. Rev. Lett. 84 358
[16] Wang B, Wei Y D, Wang J 2012 Phys. Rev. B 86 035414
[17] Jaroń-Becker A, Becker A, Faisal F H M 2004 Phys. Rev. A 69 023410
[18] Xu G L, Zhang X Z, Sun J F, Xie A D, Zhu Z H 2006 J. Atom. Mol. Phys. 23 164 (in Chinese) [徐国亮, 张现周, 孙金锋, 谢安东, 朱正和 2006 原子与分子 23 164]
[19] Gross E K U, Kohn W 1990 Adv. Quant. Chem. 21 255
[20] Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703
[21] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[22] Legrand C, Suraud E, Reinhard P G 2002 J. Phys. B 35 1115
[23] Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum)
[24] Hairer E, Lubich C, Wanner G 2003 Acta Numerica 12 399
[25] Calvayrac F, Reinhard P G, Suraud E, Ullrich C A 2000 Phys. Rep. 337 493
[26] Massó H, Veryazov V, Malmqvist P Å, Roos B O, Senent M L 2007 J. Chem. Phys. 127 154318
[27] Bernath P T, Hinkle K H, Keady J J 1989 Science 244 562
-
[1] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162
[2] Prinzbach H, Weiler A, Landenberger P, Wahl F, Wörth J, Scott T L, Gelmont M, Olevano D, Issendorff B V 2000 Nature 407 60
[3] Orden A V, Saykally R J 1998 Chem. Rev. 98 2313
[4] Massö H, Senent M L 2009 J. Phys. Chem. A 113 12404
[5] Thaddeus P, McCarthy M C 2001 Spectrochim. Acta A 57 757
[6] Maier J P, Walker G A H, Bohlender D A 2004 Astrophys. J. 602 286
[7] Senent M L, Hochlaf M 2010 Astrophys. J. 708 1452
[8] Galli G, Martin R M, Car R, Parrinello M 1989 Phys. Rev. Lett. 62 555
[9] Lu Z Y, Wang C Z, Ho K M 2000 Phys. Rev. B 61 2329
[10] Massö H, Senent M L, Rosmus P, Hochlaf M 2006 J. Chem. Phys. 124 234304
[11] Chen X R, Bai Y L, Zhou X L, Yang X D 2003 Chem. Phys. Lett. 380 330
[12] Jones R O 1999 J. Chem. Phys. 110 5189
[13] Ravagnan L, Manini N, Cinquanta E, Onida G, Sangalli D, Motta C, Devetta M, Bordoni A, Piseri P, Milani P 2009 Phys. Rev. Lett. 102 245502
[14] Cahangirov S, Topsakal M, Ciraci S 2010 Phys. Rev. B 82 195444
[15] Lang N D, Avouris P 2000 Phys. Rev. Lett. 84 358
[16] Wang B, Wei Y D, Wang J 2012 Phys. Rev. B 86 035414
[17] Jaroń-Becker A, Becker A, Faisal F H M 2004 Phys. Rev. A 69 023410
[18] Xu G L, Zhang X Z, Sun J F, Xie A D, Zhu Z H 2006 J. Atom. Mol. Phys. 23 164 (in Chinese) [徐国亮, 张现周, 孙金锋, 谢安东, 朱正和 2006 原子与分子 23 164]
[19] Gross E K U, Kohn W 1990 Adv. Quant. Chem. 21 255
[20] Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703
[21] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[22] Legrand C, Suraud E, Reinhard P G 2002 J. Phys. B 35 1115
[23] Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum)
[24] Hairer E, Lubich C, Wanner G 2003 Acta Numerica 12 399
[25] Calvayrac F, Reinhard P G, Suraud E, Ullrich C A 2000 Phys. Rep. 337 493
[26] Massó H, Veryazov V, Malmqvist P Å, Roos B O, Senent M L 2007 J. Chem. Phys. 127 154318
[27] Bernath P T, Hinkle K H, Keady J J 1989 Science 244 562
计量
- 文章访问数: 5817
- PDF下载量: 364
- 被引次数: 0