搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟

陈海楠 孙东科 戴挺 朱鸣芳

引用本文:
Citation:

凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟

陈海楠, 孙东科, 戴挺, 朱鸣芳

Modeling of the interaction between solidification interface and bubble using the lattice Boltzmann method with large density ratio

Chen Hai-Nan, Sun Dong-Ke, Dai Ting, Zhu Ming-Fang
PDF
导出引用
  • 建立了二维双组分两相流的大密度比格子玻尔兹曼方法 (lattice Boltzmann method, LBM)模型. 该模型基于改进的Shan-Chen伪势多相流LBM模型, 结合采用不同时间步长的方法, 实现密度比达800以上的气液两相流模拟. 为了对模型进行验证, 模拟了在不同气液相互作用系数和密度比条件下气泡内外压力差与其半径之间的关系, 其结果满足Laplace定律. 将所建立的大密度比LBM与介观尺度的元胞自动机(cellular automaton, CA)和有限差分法(FDM)相耦合, 用LBM模拟气液两相流, 用CA方法模拟固相生长, 用有限差分法模拟温度场, 采用LBM-CA-FDM耦合模型对定向凝固过程中凝固前沿的气泡与液-固界面之间的相互作用进行模拟研究. 结果表明, 绝热气泡的存在影响了温度场分布, 使得凝固前沿接近气泡时, 液-固界面凸起, 在不同的固相生长速度条件下, 出现凝固前沿淹没气泡或气泡脱离凝固前沿的不同情况, 模拟结果与实验结果符合良好.
    A two-dimensional (2D) two-component and two-phase lattice Boltzmann method (LBM) with large density ratio is developed based on a modified Shan-Chen pseudopotential model combined with the deferent time step method. The present LBM model can simulate the gas-liquid two-phase flow with density ratio up to around 800. To validate the model, the pressure difference between the inside and outside of a bubble varying with its radius is simulated with different gas-liquid interact parameters and density ratios. The results are found to obey the Laplace law. Then, the LBM is coupled with the cellular automaton (CA) method used for simulating the solid phase growth, and the finite difference method (FDM) used for calculating the temperature field. The LBM-CA-FDM coupled model is used to simulate the interaction between bubble and the solidification interface. The results show that the existence of adiabatic bubble influences the distribution of temperature field in front of solidification interface, which leads to a bulge of the solid-liquid interface when it is close to the bubble. Under the conditions of different growth rates, the bubble is either engulfed or pushed away by the growing solid-liquid interface. The simulation results agree reasonably well with those observed experimentally.
    • 基金项目: 国家自然科学基金(批准号: 50971042)和江苏省先进金属材料高技术研究重点实验室开放课题(批准号: AMM201005)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50971042) and the Jiangsu Key Laboratory for Advanced Metallic Materials, China (Grant No. AMM201005).
    [1]

    Han Q Y 2006 Scripta Mater. 55 871

    [2]

    Xing H, Wang J Y Chen C L Shen Z F, Zhao C W 2012 J. Cryst. Growth 338 256

    [3]

    Zhao L, Liao H C, Pan Y, Wang L, Wang Q G 2011 Scripta Mater. 65 795

    [4]

    Hadji L 2007 Phys. Rev. E 75 042602

    [5]

    Kao J C T, Golovin A A, Davis S H 2009 J. Fluid Mech. 625 299

    [6]

    Atwood R C, Lee P D 2003 Acta Mater. 51 5447

    [7]

    Catalina A V, Stefanescu D M, Sen S, Kaukler W F 2004 Metall Mater. Tran. A 35A 1525

    [8]

    Feng S D, Zhao Y, Gao X L, Ji Z Z 2002 Chin. Phys. Lett. 19 814

    [9]

    Yu Z Q, Zhang Z, Zhang B T 2002 Chin. Phys. Lett. 11 771

    [10]

    Karagadde S, Sundarraj S, Dutta P 2009 Scripta Mater. 61 216

    [11]

    Zhang X M, Zhou C Y, Islam S, Liu J Q 2009 Acta Phys. Sin. 58 8046 (in Chinese) [张新明, 周超英, Islam S, 刘家琦 2009 58 8046]

    [12]

    Zeng J B, Li L J, Liao Q, Jiang F M 2011 Acta Phys. Sin. 60 066401 (in Chinese) [曾建邦, 李隆键, 廖全, 蒋方明 2011 60 066401]

    [13]

    Huang H, Thorne Jr D T, Schaap M G, Sukop M C 2007 Phys. Rev. E 76 066701

    [14]

    Kim L S, Jeong H K, Ha M Y, Kim K C 2008 J. Mech. Sci. Technol. 22 770

    [15]

    Yu Z, Hemminger O, Fan L S 2008 Chem. Eng. Sci. 62 7172

    [16]

    Wu W, Sun D K, Dai T, Zhu M F 2012 Acta Phys. Sin. 61 150501 (in Chinese) [吴伟, 孙东科, 戴挺, 朱鸣芳 2012 61 150501]

    [17]

    Inamuro T, Ogata T, Tajima S, Konishi N 2004 J. Comput. Phys. 198 628

    [18]

    Yan Y Y, Zu Y Q 2007 J. Comput. Phys. 227 763

    [19]

    Yuan P, Schaefer L 2006 Phys. Fluids 18 042101

    [20]

    Liu M, Yu Z, Wang T, Wang J, Fan L S 2010 Chem. Eng. Sci. 65 5615

    [21]

    Sbragaglia M, Benzi R, Biferale L, Succi S, Sugiyama K, Toschi F 2007 Phys. Rev. E 75 026702

    [22]

    Zhou F M, Sun D K, Zhu M F 2010 Acta Phys. Sin. 59 3394 (in Chinese) [周丰茂, 孙东科, 朱鸣芳 2010 59 3394]

    [23]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [24]

    Zhang J 2011 Microfluid Nanofluid 10 1

    [25]

    Yang Z R, Sun D K, Pan S Y, Dai T, Zhu M F 2009 Acta Metall. Sin. 45 43 (in Chinese) [杨朝蓉, 孙东科, 潘诗琰, 戴挺, 朱鸣芳 2009 金属学报 45 43]

    [26]

    Li Q, Li D Z, Qian B N 2004 Acta Phys. Sin. 53 3477 (in Chinese) [李强, 李殿忠, 钱百年 2004 53 3477]

    [27]

    Yang Z R 2009 M. S. Dissertation (Nanjing: Southeast University) (in Chinese) [杨朝蓉 2009 硕士学位论文 (南京: 东南大学)]

    [28]

    Zhao L 2012 Ph. D. Dissertation (Nanjing: Southeast University) (in Chinese) [赵磊 2012博士学位论文 (南京: 东南大学)]

  • [1]

    Han Q Y 2006 Scripta Mater. 55 871

    [2]

    Xing H, Wang J Y Chen C L Shen Z F, Zhao C W 2012 J. Cryst. Growth 338 256

    [3]

    Zhao L, Liao H C, Pan Y, Wang L, Wang Q G 2011 Scripta Mater. 65 795

    [4]

    Hadji L 2007 Phys. Rev. E 75 042602

    [5]

    Kao J C T, Golovin A A, Davis S H 2009 J. Fluid Mech. 625 299

    [6]

    Atwood R C, Lee P D 2003 Acta Mater. 51 5447

    [7]

    Catalina A V, Stefanescu D M, Sen S, Kaukler W F 2004 Metall Mater. Tran. A 35A 1525

    [8]

    Feng S D, Zhao Y, Gao X L, Ji Z Z 2002 Chin. Phys. Lett. 19 814

    [9]

    Yu Z Q, Zhang Z, Zhang B T 2002 Chin. Phys. Lett. 11 771

    [10]

    Karagadde S, Sundarraj S, Dutta P 2009 Scripta Mater. 61 216

    [11]

    Zhang X M, Zhou C Y, Islam S, Liu J Q 2009 Acta Phys. Sin. 58 8046 (in Chinese) [张新明, 周超英, Islam S, 刘家琦 2009 58 8046]

    [12]

    Zeng J B, Li L J, Liao Q, Jiang F M 2011 Acta Phys. Sin. 60 066401 (in Chinese) [曾建邦, 李隆键, 廖全, 蒋方明 2011 60 066401]

    [13]

    Huang H, Thorne Jr D T, Schaap M G, Sukop M C 2007 Phys. Rev. E 76 066701

    [14]

    Kim L S, Jeong H K, Ha M Y, Kim K C 2008 J. Mech. Sci. Technol. 22 770

    [15]

    Yu Z, Hemminger O, Fan L S 2008 Chem. Eng. Sci. 62 7172

    [16]

    Wu W, Sun D K, Dai T, Zhu M F 2012 Acta Phys. Sin. 61 150501 (in Chinese) [吴伟, 孙东科, 戴挺, 朱鸣芳 2012 61 150501]

    [17]

    Inamuro T, Ogata T, Tajima S, Konishi N 2004 J. Comput. Phys. 198 628

    [18]

    Yan Y Y, Zu Y Q 2007 J. Comput. Phys. 227 763

    [19]

    Yuan P, Schaefer L 2006 Phys. Fluids 18 042101

    [20]

    Liu M, Yu Z, Wang T, Wang J, Fan L S 2010 Chem. Eng. Sci. 65 5615

    [21]

    Sbragaglia M, Benzi R, Biferale L, Succi S, Sugiyama K, Toschi F 2007 Phys. Rev. E 75 026702

    [22]

    Zhou F M, Sun D K, Zhu M F 2010 Acta Phys. Sin. 59 3394 (in Chinese) [周丰茂, 孙东科, 朱鸣芳 2010 59 3394]

    [23]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [24]

    Zhang J 2011 Microfluid Nanofluid 10 1

    [25]

    Yang Z R, Sun D K, Pan S Y, Dai T, Zhu M F 2009 Acta Metall. Sin. 45 43 (in Chinese) [杨朝蓉, 孙东科, 潘诗琰, 戴挺, 朱鸣芳 2009 金属学报 45 43]

    [26]

    Li Q, Li D Z, Qian B N 2004 Acta Phys. Sin. 53 3477 (in Chinese) [李强, 李殿忠, 钱百年 2004 53 3477]

    [27]

    Yang Z R 2009 M. S. Dissertation (Nanjing: Southeast University) (in Chinese) [杨朝蓉 2009 硕士学位论文 (南京: 东南大学)]

    [28]

    Zhao L 2012 Ph. D. Dissertation (Nanjing: Southeast University) (in Chinese) [赵磊 2012博士学位论文 (南京: 东南大学)]

  • [1] 冯晶森, 闵敬春. 直通道内两相流动的格子玻尔兹曼方法模拟.  , 2023, 72(8): 084701. doi: 10.7498/aps.72.20222421
    [2] 张士杰, 王颖明, 王琦, 李晨宇, 李日. 基于元胞自动机-格子玻尔兹曼模型的枝晶碰撞行为模拟.  , 2021, 70(23): 238101. doi: 10.7498/aps.70.20211292
    [3] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟.  , 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [4] 梁经韵, 张莉莉, 栾悉道, 郭金林, 老松杨, 谢毓湘. 多路段元胞自动机交通流模型.  , 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [5] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟.  , 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [6] 魏雷, 林鑫, 王猛, 黄卫东. 激光立体成形中熔池凝固微观组织的元胞自动机模拟.  , 2015, 64(1): 018103. doi: 10.7498/aps.64.018103
    [7] 孟广慧, 林鑫. 二元层片共晶凝固过程的特征尺度选择.  , 2014, 63(6): 068104. doi: 10.7498/aps.63.068104
    [8] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟.  , 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [9] 永贵, 黄海军, 许岩. 菱形网格的行人疏散元胞自动机模型.  , 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [10] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法.  , 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [11] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的近平板圆孔气泡动力学行为研究.  , 2013, 62(14): 144703. doi: 10.7498/aps.62.144703
    [12] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为.  , 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [13] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的气泡同波浪相互作用研究.  , 2012, 61(22): 224702. doi: 10.7498/aps.61.224702
    [14] 吴伟, 孙东科, 戴挺, 朱鸣芳. 枝晶生长和气泡形成的数值模拟.  , 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [15] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟.  , 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [16] 黄锋, 邸洪双, 王广山. 用元胞自动机方法模拟镁合金薄带双辊铸轧过程凝固组织.  , 2009, 58(13): 313-S318. doi: 10.7498/aps.58.313
    [17] 单博炜, 林鑫, 魏雷, 黄卫东. 纯物质枝晶凝固的元胞自动机模型.  , 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [18] 花 伟, 林柏梁. 考虑行车状态的一维元胞自动机交通流模型.  , 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [19] 牟勇飚, 钟诚文. 基于安全驾驶的元胞自动机交通流模型.  , 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
    [20] 李 强, 李殿中, 钱百年. 元胞自动机方法模拟枝晶生长.  , 2004, 53(10): 3477-3481. doi: 10.7498/aps.53.3477
计量
  • 文章访问数:  8807
  • PDF下载量:  1177
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-17
  • 修回日期:  2013-03-03
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map