搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO薄膜/金刚石在不同激励条件下声表面波特性的计算与分析

钱莉荣 杨保和

引用本文:
Citation:

ZnO薄膜/金刚石在不同激励条件下声表面波特性的计算与分析

钱莉荣, 杨保和

Calculation and analysis of surface acoustic wave properties of ZnO film on diamond under different excitation conditions

Qian Li-Rong, Yang Bao-He
PDF
导出引用
  • 本文首先以刚度矩阵法为基础, 给出了ZnO薄膜/金刚石在四种不同激励条件下的有效介电常数计算公式. 然后以此为工具, 分别计算了多晶ZnO(002) 薄膜/多晶金刚石和单晶ZnO(002) 薄膜/多晶金刚石的声表面波特性, 并根据计算结果及设计制作声表面波器件的要求, 对ZnO膜厚的选择进行了详细地分析. 最后讨论了ZnO/金刚石/Si复合晶片可以忽略Si衬底对声表面特性影响时对金刚石膜厚的要求.
    In the last twenty years, the ZnO/diamond layered structure for surface acoustic wave (SAW) devices have been widely studied and have attracted great attention, due to its advantages of high acoustic velocity, high electromechanical coupling coefficient and high power durability. Distinguished from the conventional single-crystal substrate (such as quartz, lithium niobate), ZnO/diamond layered structure shows dispersive SAW properties, which can be excited by four ways: interdigital transducer (IDT)/ZnO/diamond, IDT/ZnO/shorting metal/diamond, ZnO/IDT/diamond, and shorting metal/ ZnO/IDT/diamond. In this paper, the formulation based on the stiffness matrix method for calculating the effective permittivity of ZnO/diamond layered structure under four excitation conditions is given first. Then, by using this formulation, the SAW properties of the monocrystalline ZnO (002) film on polycrystalline diamond and the polycrystalline ZnO (002) film on polycrystalline diamond are calculated respectively. Based on the results of calculation, the ZnO film thicknesses qualified to design and fabricate SAW device are analyzed in detail. Finally, we discuss the function of diamond film thickness of ZnO/diamond/Si layered structure so as to avoid the influence of the silicon substrate on the SAW properties.
    • 基金项目: 国家高技术研究发展计划 (批准号: 2013AA030801)、国家自然科学基金(批准号: 50972105)、天津市科技支撑计划重点项目 (批准号: 10ZCKFGX01200)和天津市科技计划重点项目 (批准号: 10SYSYJC27700) 资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA030801), the National Natural Science Foundation of China (Grant No. 50972105), the Key Technology Research and Development Program of Tianjin, China (Grant No. 10ZCKFGX01200), and the Tianjin Key Program for Development of Science and Technology, China (Grant No. 10SYSYJC27700).
    [1]

    Nakahata H, Higaki K, Fujii S, Hachigo A, Kitabayashi H, Tanabe K, Seki Y, Shikata S 1995 Proc. IEEE Ultrason. Symp. 1 361

    [2]

    Higaki K, Nakahata H, Kitabayashi H, Fujii S, Tanabe K, Seki Y, Shikata S 1997 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 44 1395

    [3]

    Fujii S, Seki Y, Yoshida K, Nakahata H, Higaki K, Kitabayashi H, Shikata S 1997 Proc. IEEE Ultrason. Symp. 1 183

    [4]

    Guang Y, Santos P V 2007 Acta Phys. Sin. 56 3515 (in Chinese) [杨光, Santos P V 2007 56 3515]

    [5]

    Pedrós J, Garcia-Gancedo L, Ford C, Barnes C, Griffiths J, Jones G, Flewitt A 2011 J. Appl. Phys. 110 103501

    [6]

    Fu Y, Garcia-Gancedo L, Pang H, Porro S, Gu Y, Luo J, Zu X, Placido F, Wilson J, Flewitt A 2012 Biomicrofluidics 6 024105

    [7]

    Pan F, Luo J T, Yang Y C, Wang X B, Zeng F 2012 Sci. China Tech. Sci. 55 421

    [8]

    Luo J, Zeng F, Pan F, Li H, Niu J, Jia R, Liu M 2010 Appl. Surf. Sci. 256 3081

    [9]

    Luo J, Fan P, Pan F, Zeng F, Zhang D, Zheng Z, Liang G, Cai X 2012 Phys. Status Solidi RRL 6 381

    [10]

    Luo J, Pan F, Fan P, Zeng F, Zhang D, Zheng Z, Liang G 2012 Appl. Phys. Lett. 101 172909

    [11]

    Hachigo A, Malocha D C 1998 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 45 660

    [12]

    Wu T T, Chen Y Y 2002 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 49 142

    [13]

    Wu T T, Chen Y Y, Chou T T 2002 Proc. IEEE Ultrason. Symp. 1 271

    [14]

    Nakahata H, Hachigo A, Higaki K, Fujii S, Shikata S, Fujimori N 1995 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 42 362

    [15]

    Adler E L, Solie L 1995 Proc. IEEE Ultrason. Symp. 1 341

    [16]

    Campbell J J, Jones W R 1968 IEEE Sonics and Ultrason. 15 209

    [17]

    Adler E L 1990 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 37 485

    [18]

    Levent Degertekin F, Honein B, Khuri-Yakub B 1996 Proc. IEEE Ultrason. Symp. 1 559

    [19]

    Pastureaud T, Laude V, Ballandras S 2002 Appl. Phys. Lett. 80 2544

    [20]

    Tan E L 2002 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 49 929

    [21]

    Wang L, Rokhlin S L 2004 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 51 453

    [22]

    Zhang V Y, Lefebvre J E, Bruneel C, Gryba T 2001 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 48 1449

    [23]

    Milsom R F, Reilly N H C, Redwood M 1977 IEEE Sonics and Ultrason. 24 147

    [24]

    Donghai Q, Wen L, Smith P M 1999 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 46 1242

    [25]

    Smith P M 2001 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 48 171

    [26]

    Peach R C 2006 IEEE Ultrason. Symp. Vancouver, BC, Oct. 2-6, 2006 p371

    [27]

    Chen Y Y, Hsu J C, Wu T T 2004 J. Chin. Inst. Eng. 27 823

    [28]

    Hashimoto K 2000 Surface acoustic wave devices in telecommunications: modelling and simulation (Berlin: Springer) p165

    [29]

    Benetti M, Cannata D, Di Pictrantonio F, Verona E 2005 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 52 1806

    [30]

    Carlotti G, Socino G, Petri A, Verona E 1987 IEEE Ultrason. Symp. Denver, Colorado, USA, Oct. 14-16, 1987 p295

    [31]

    Jaffe H, Berlincourt D A 1965 Proc. IEEE 53 1372

    [32]

    Hachigo A, Nakahata H, Itakura K, Fujii S, Shikata S 1999 Proc. IEEE Ultrason. Symp. 1 325

    [33]

    Nakahata H, Hachigo A, Itakura K, Shikata S 2000 IEEE Ultrason. Symp. 1 349

    [34]

    Morgan D 2007 Surface acoustic wave filters (2nd Edn.) (Oxford: Elsevier) p343

    [35]

    Shikata S, Nakahata H, Higaki K, Hachigo A, Fujimori N, Yamamoto Y, Sakairi N, Takahashi Y 1993 Proc. IEEE Ultrason. Symp. 1 277

  • [1]

    Nakahata H, Higaki K, Fujii S, Hachigo A, Kitabayashi H, Tanabe K, Seki Y, Shikata S 1995 Proc. IEEE Ultrason. Symp. 1 361

    [2]

    Higaki K, Nakahata H, Kitabayashi H, Fujii S, Tanabe K, Seki Y, Shikata S 1997 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 44 1395

    [3]

    Fujii S, Seki Y, Yoshida K, Nakahata H, Higaki K, Kitabayashi H, Shikata S 1997 Proc. IEEE Ultrason. Symp. 1 183

    [4]

    Guang Y, Santos P V 2007 Acta Phys. Sin. 56 3515 (in Chinese) [杨光, Santos P V 2007 56 3515]

    [5]

    Pedrós J, Garcia-Gancedo L, Ford C, Barnes C, Griffiths J, Jones G, Flewitt A 2011 J. Appl. Phys. 110 103501

    [6]

    Fu Y, Garcia-Gancedo L, Pang H, Porro S, Gu Y, Luo J, Zu X, Placido F, Wilson J, Flewitt A 2012 Biomicrofluidics 6 024105

    [7]

    Pan F, Luo J T, Yang Y C, Wang X B, Zeng F 2012 Sci. China Tech. Sci. 55 421

    [8]

    Luo J, Zeng F, Pan F, Li H, Niu J, Jia R, Liu M 2010 Appl. Surf. Sci. 256 3081

    [9]

    Luo J, Fan P, Pan F, Zeng F, Zhang D, Zheng Z, Liang G, Cai X 2012 Phys. Status Solidi RRL 6 381

    [10]

    Luo J, Pan F, Fan P, Zeng F, Zhang D, Zheng Z, Liang G 2012 Appl. Phys. Lett. 101 172909

    [11]

    Hachigo A, Malocha D C 1998 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 45 660

    [12]

    Wu T T, Chen Y Y 2002 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 49 142

    [13]

    Wu T T, Chen Y Y, Chou T T 2002 Proc. IEEE Ultrason. Symp. 1 271

    [14]

    Nakahata H, Hachigo A, Higaki K, Fujii S, Shikata S, Fujimori N 1995 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 42 362

    [15]

    Adler E L, Solie L 1995 Proc. IEEE Ultrason. Symp. 1 341

    [16]

    Campbell J J, Jones W R 1968 IEEE Sonics and Ultrason. 15 209

    [17]

    Adler E L 1990 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 37 485

    [18]

    Levent Degertekin F, Honein B, Khuri-Yakub B 1996 Proc. IEEE Ultrason. Symp. 1 559

    [19]

    Pastureaud T, Laude V, Ballandras S 2002 Appl. Phys. Lett. 80 2544

    [20]

    Tan E L 2002 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 49 929

    [21]

    Wang L, Rokhlin S L 2004 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 51 453

    [22]

    Zhang V Y, Lefebvre J E, Bruneel C, Gryba T 2001 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 48 1449

    [23]

    Milsom R F, Reilly N H C, Redwood M 1977 IEEE Sonics and Ultrason. 24 147

    [24]

    Donghai Q, Wen L, Smith P M 1999 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 46 1242

    [25]

    Smith P M 2001 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 48 171

    [26]

    Peach R C 2006 IEEE Ultrason. Symp. Vancouver, BC, Oct. 2-6, 2006 p371

    [27]

    Chen Y Y, Hsu J C, Wu T T 2004 J. Chin. Inst. Eng. 27 823

    [28]

    Hashimoto K 2000 Surface acoustic wave devices in telecommunications: modelling and simulation (Berlin: Springer) p165

    [29]

    Benetti M, Cannata D, Di Pictrantonio F, Verona E 2005 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 52 1806

    [30]

    Carlotti G, Socino G, Petri A, Verona E 1987 IEEE Ultrason. Symp. Denver, Colorado, USA, Oct. 14-16, 1987 p295

    [31]

    Jaffe H, Berlincourt D A 1965 Proc. IEEE 53 1372

    [32]

    Hachigo A, Nakahata H, Itakura K, Fujii S, Shikata S 1999 Proc. IEEE Ultrason. Symp. 1 325

    [33]

    Nakahata H, Hachigo A, Itakura K, Shikata S 2000 IEEE Ultrason. Symp. 1 349

    [34]

    Morgan D 2007 Surface acoustic wave filters (2nd Edn.) (Oxford: Elsevier) p343

    [35]

    Shikata S, Nakahata H, Higaki K, Hachigo A, Fujimori N, Yamamoto Y, Sakairi N, Takahashi Y 1993 Proc. IEEE Ultrason. Symp. 1 277

  • [1] 黄铭贤, 胡文彬, 白飞明. 声表面波-自旋波耦合及磁声非互易性器件.  , 2024, 73(15): 158501. doi: 10.7498/aps.73.20240462
    [2] 董宜雷, 陈诚, 林书玉. 基于传输矩阵法的任意变厚度环型压电超声换能器.  , 2023, 72(5): 054304. doi: 10.7498/aps.72.20222110
    [3] 谭自豪, 孙小伟, 宋婷, 温晓东, 刘禧萱, 刘子江. 球形复合柱表面波声子晶体的带隙特性仿真.  , 2021, 70(14): 144301. doi: 10.7498/aps.70.20210165
    [4] 秦晨, 余辉, 叶乔波, 卫欢, 江晓清. 基于绝缘体上硅的一种改进的Mach-Zehnder声光调制器.  , 2016, 65(1): 014304. doi: 10.7498/aps.65.014304
    [5] 郝娟, 周广刚, 马跃, 黄文奇, 张鹏, 卢贵武. 高温条件下Ga3PO7晶体热学及声表面波性质的理论研究.  , 2016, 65(11): 113101. doi: 10.7498/aps.65.113101
    [6] 曾伟, 王海涛, 田贵云, 胡国星, 汪文. 研究激光激发的声表面波与材料近表面缺陷的振荡效应.  , 2015, 64(13): 134302. doi: 10.7498/aps.64.134302
    [7] 李小泽, 滕雁, 王建国, 宋志敏, 张黎军, 张余川, 叶虎. 过模结构表面波振荡器模式选择.  , 2013, 62(8): 084103. doi: 10.7498/aps.62.084103
    [8] 周振凯, 韦利明, 丰杰. ZnO/Diamond/Si结构中声表面波传播特性分析.  , 2013, 62(10): 104601. doi: 10.7498/aps.62.104601
    [9] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟.  , 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [10] 王敬时, 徐晓东, 刘晓峻, 许钢灿. 利用激光超声技术研究表面微裂纹缺陷材料的低通滤波效应.  , 2008, 57(12): 7765-7769. doi: 10.7498/aps.57.7765
    [11] 杨 光, Santos Paulo V.. 磁控溅射制备ZnO薄膜及其声表面波特性.  , 2007, 56(6): 3515-3520. doi: 10.7498/aps.56.3515
    [12] 肖 夏, 尤学一, 姚素英. 表征超大规模集成电路互连纳米薄膜硬度特性的声表面波的频散特性.  , 2007, 56(4): 2428-2433. doi: 10.7498/aps.56.2428
    [13] 童元伟, 张冶文, 赫 丽, 李宏强, 陈 鸿. 用传输矩阵法研究微波波段准一维同轴光子晶体能隙结构.  , 2006, 55(2): 935-940. doi: 10.7498/aps.55.935
    [14] 杨 光, P. V. Santos. 声表面波对GaAs(110)量子阱发光特性的调制.  , 2006, 55(8): 4327-4331. doi: 10.7498/aps.55.4327
    [15] 王洪梅, 张亚非. Airy传递矩阵法与偏压下多势垒结构的准束缚能级.  , 2005, 54(5): 2226-2232. doi: 10.7498/aps.54.2226
    [16] 王辉, 李永平. 用特征矩阵法计算光子晶体的带隙结构.  , 2001, 50(11): 2172-2178. doi: 10.7498/aps.50.2172
    [17] 刘建胜, 李儒新, 朱频频, 徐至展, 刘晶儒. 大尺寸团簇在超短超强激光场中的动力学行为.  , 2001, 50(6): 1121-1127. doi: 10.7498/aps.50.1121
    [18] 郑宏兴, 葛德彪. 广义传播矩阵法分析分层各向异性材料对电磁波的反射与透射.  , 2000, 49(9): 1702-1705. doi: 10.7498/aps.49.1702
    [19] 刘颖力, 张怀武, 王豪才, 钟智勇. 多层周期薄膜中静磁表面波宽度模色散特性研究.  , 1999, 48(13): 98-104. doi: 10.7498/aps.48.98
    [20] 王佐卿, 周素华, 汪承浩. 声表面波在声栅上的Bragg衍射.  , 1983, 32(2): 156-167. doi: 10.7498/aps.32.156
计量
  • 文章访问数:  6332
  • PDF下载量:  17235
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-08
  • 修回日期:  2013-02-22
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map