搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可压缩涡流场中空泡运动规律及声辐射特性研究

叶曦 姚熊亮 张阿漫 庞福振

引用本文:
Citation:

可压缩涡流场中空泡运动规律及声辐射特性研究

叶曦, 姚熊亮, 张阿漫, 庞福振

The motion and acoustic radiation characteristics for cavitation in the compressible vortex fluid

Ye Xi, Yao Xiong-Liang, Zhang A-Man, Pang Fu-Zhen
PDF
导出引用
  • 基于可压缩流体力学基本理论, 通过边界积分方程, 采用不同表面压力模型, 求解空泡在计及可压缩性的涡流场中的运动规律; 通过表面离散及坐标变换, 采用Kirchhoff动边界积分方程, 将空泡表面视为运动变形边界, 作为直接噪声源, 获得涡流场中空泡运动产生的时域声压分布; 分析了涡流场参数对空泡运动规律及声辐射特性的影响. 研究结果表明: 计及流场可压缩性, 空泡的脉动幅度会随时间减弱, 辐射声压幅值随之减小; 空泡在涡流场中会发生延展、 颈缩、 撕裂, 并在撕裂后子空泡中形成射流; 当流场中的压力减小时, 空泡运动过程中的最大半径与撕裂前的最大长度逐渐增加, 且当流场中压力较小时, 空泡撕裂时形成的子空泡增多; 空泡辐射声压的指向性较弱, 撕裂会使辐射声压产生突变, 形成极大峰值; 随着涡通量的增大或空泡数的减小, 空泡脉动周期及其诱导的辐射声压波动周期随之延长, 辐射声压峰值逐渐滞后并减小. 本文结果旨在为涡流场中空泡运动规律及声辐射特性的相关研究提供参考.
    Based on the compressible fluid theory, the boundary integral equation is used to solve the motion law of cavitation in vortex flow within different surface pressure models. The time-domain sound pressure characteristics induced by cavitation in vortex field are obtained by the moving surface Kirchhoff formulation. With the surface discretion and coordinate transformation, the cavitation surfaces are treated as the moving deformable boundary and the acoustic source directly. The influence of vortex field parameters on motion and radiation of cavitation is analyzed. Results show that with the consideration of compression, the amplitude of cavitation's pulsation as well as the sound pressure will be decreased. In the vortex fluid, cavitation will be extended, necked and splitted, and may generate a jet in sub-bubbles. While the pressure is reduced in the fluid field, the maximum radius and length before splitting of the cavitation will be enlarged. The number of sub-bubbles will increase when the pressure is small in the fluid field. The directive property of cavitation is weak. And the splitting of cavitation will generate a great peak value of sound pressure. With the increase in vortex flux or the decrease in the cavity number, the period of the cavitation oscillation and its radiation sound pressure are elongated, and the peak of sound pressure is retarded and reduced. The results in this paper could be used as the reference data for the research about the motion and sound radiation characteristics of cavitation in vortex fluid.
    • 基金项目: 国家自然科学基金重点项目(批准号: 50939002), 国家安全重大基础研究项目(批准号: 613157)和优秀青年科学基金(批准号: 51222904)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50939002), the National Basic Research Program of China (Grant No. 613157), and the Excellent Young Scientist Foundation of NSFC (Grant No. 51222904).
    [1]

    Hsiao C T, Pauley L L 1999 J. Fluids Eng. 121 198

    [2]

    Choi J K, Chahine G L 2002 International Association for Boundary Element Method Austin, TX, USA, 2002, May 28-30, 2002 p1

    [3]

    Choi J K, Chahine G L 2003 The 8th International Conference on Numerical Ship Hydrodynamics Busan, Korea, September 22-25 2003

    [4]

    Hsial C T, Pauley L L 2003 J. Fluids Eng. 125 53

    [5]

    Rebow M, Choi J, Choi J K, Chahine G L,Ceccio S L 2004 11th International Synposium on Flow Visualization Indiana, USA, August 9-12 2004 p1

    [6]

    Ni B Y, Zhang A M 2012 Appl. Math Mech. 33 701

    [7]

    Carrica M 1999 Int. J Multiphas. Flow 25 257

    [8]

    Pierce A D 1981 Acoustic: An Introduction to Its Physical Principles and Applications (New York: McGraw-Hill) p180

    [9]

    Hawkings D L 1979 Mechanics of sound generation in flows Goettingen, West Germany, August 28-31 1979 p294

    [10]

    Morgans W R 1930 Philos. Mag. 9 141

    [11]

    Farassat F 1988 J. Sound Vib. 123 451

    [12]

    Wang S P 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [王诗平 2011 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [13]

    Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 339 (in Chinese) [张阿漫, 姚熊亮 2008 57 339]

    [14]

    Zhang A M, Yao X L, Li J 2008 Acta Phys. Sin. 57 1672 (in Chinese) [张阿漫, 姚熊亮, 李佳 2008 57 1672]

    [15]

    Qi D M, Lu C J 2001 J. Hydrodyn 16 9 (in Chinese) [戚定满, 鲁传敬 2001 水动力学研究与进展 16 9]

    [16]

    Qi D M 1999 Ph. D. Dissertation (Shanghai:Shanghai Jiaotong University) (in Chinese) [戚定满 1999 博士学位论文 (上海: 上海交通大学)]

    [17]

    Jamaluddin A R, Turangan C K 2011 J. Fluid Mech. 677 305

    [18]

    Francescantonio Di 1997 J. Sound Vib. 202 491

    [19]

    Farassat F 1983 Vertica 7 309

    [20]

    Geers T L 1978 J. Acoust. Soc. Am. 64 1500

    [21]

    Geers T L 1971 J. Acoust. Soc. Am. 49 1505

    [22]

    Geers T L 1980 J. Acoust. Soc. Am. 173 1152

    [23]

    Liang K M 2010 Methods of Mathematical Physics (Beijing:Higher Education Press) (in Chinese) [梁昆淼 2010 数学物理方法(北京: 高等教育出版社)]

    [24]

    Wang S P, Sun S L, Zhang A M 2012 Chinese Journal of Theoretical and Applied Mechanics 44 513 (in Chinese) [王诗平, 孙士丽, 张阿漫 2012 力学学报 44 513]

    [25]

    Zhang A M, Wang S P, Wu G X 2013 Eng. Anal. Bound. Elem. DOI: 10.1016/j.enganabound. 2013.04.013

    [26]

    Saffman P G 1992 Vortex Dynamics (Cambridge: Cambridge University Press)

    [27]

    Best J P 1993 J. Fluid Mech. 251 79

    [28]

    Rose D 1976 Mechanices of Underwater Noise (Pergamon) p62

    [29]

    Gilmore F G 1952 Hydro Lab California Institute Technical Report 26 117

    [30]

    Du G H, Zhu Z M 2001 Acoustics Foundation (Nanjing: Nanjing University) (in Chinese) [杜功焕, 朱哲民, 2001 声学基础 (南京: 南京大学出版社)]

  • [1]

    Hsiao C T, Pauley L L 1999 J. Fluids Eng. 121 198

    [2]

    Choi J K, Chahine G L 2002 International Association for Boundary Element Method Austin, TX, USA, 2002, May 28-30, 2002 p1

    [3]

    Choi J K, Chahine G L 2003 The 8th International Conference on Numerical Ship Hydrodynamics Busan, Korea, September 22-25 2003

    [4]

    Hsial C T, Pauley L L 2003 J. Fluids Eng. 125 53

    [5]

    Rebow M, Choi J, Choi J K, Chahine G L,Ceccio S L 2004 11th International Synposium on Flow Visualization Indiana, USA, August 9-12 2004 p1

    [6]

    Ni B Y, Zhang A M 2012 Appl. Math Mech. 33 701

    [7]

    Carrica M 1999 Int. J Multiphas. Flow 25 257

    [8]

    Pierce A D 1981 Acoustic: An Introduction to Its Physical Principles and Applications (New York: McGraw-Hill) p180

    [9]

    Hawkings D L 1979 Mechanics of sound generation in flows Goettingen, West Germany, August 28-31 1979 p294

    [10]

    Morgans W R 1930 Philos. Mag. 9 141

    [11]

    Farassat F 1988 J. Sound Vib. 123 451

    [12]

    Wang S P 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [王诗平 2011 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [13]

    Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 339 (in Chinese) [张阿漫, 姚熊亮 2008 57 339]

    [14]

    Zhang A M, Yao X L, Li J 2008 Acta Phys. Sin. 57 1672 (in Chinese) [张阿漫, 姚熊亮, 李佳 2008 57 1672]

    [15]

    Qi D M, Lu C J 2001 J. Hydrodyn 16 9 (in Chinese) [戚定满, 鲁传敬 2001 水动力学研究与进展 16 9]

    [16]

    Qi D M 1999 Ph. D. Dissertation (Shanghai:Shanghai Jiaotong University) (in Chinese) [戚定满 1999 博士学位论文 (上海: 上海交通大学)]

    [17]

    Jamaluddin A R, Turangan C K 2011 J. Fluid Mech. 677 305

    [18]

    Francescantonio Di 1997 J. Sound Vib. 202 491

    [19]

    Farassat F 1983 Vertica 7 309

    [20]

    Geers T L 1978 J. Acoust. Soc. Am. 64 1500

    [21]

    Geers T L 1971 J. Acoust. Soc. Am. 49 1505

    [22]

    Geers T L 1980 J. Acoust. Soc. Am. 173 1152

    [23]

    Liang K M 2010 Methods of Mathematical Physics (Beijing:Higher Education Press) (in Chinese) [梁昆淼 2010 数学物理方法(北京: 高等教育出版社)]

    [24]

    Wang S P, Sun S L, Zhang A M 2012 Chinese Journal of Theoretical and Applied Mechanics 44 513 (in Chinese) [王诗平, 孙士丽, 张阿漫 2012 力学学报 44 513]

    [25]

    Zhang A M, Wang S P, Wu G X 2013 Eng. Anal. Bound. Elem. DOI: 10.1016/j.enganabound. 2013.04.013

    [26]

    Saffman P G 1992 Vortex Dynamics (Cambridge: Cambridge University Press)

    [27]

    Best J P 1993 J. Fluid Mech. 251 79

    [28]

    Rose D 1976 Mechanices of Underwater Noise (Pergamon) p62

    [29]

    Gilmore F G 1952 Hydro Lab California Institute Technical Report 26 117

    [30]

    Du G H, Zhu Z M 2001 Acoustics Foundation (Nanjing: Nanjing University) (in Chinese) [杜功焕, 朱哲民, 2001 声学基础 (南京: 南京大学出版社)]

  • [1] 荆晨轩, 时胜国, 杨德森, 张姜怡, 李松. 水下低频振荡涡流场声散射调制机理与特性研究.  , 2023, 72(1): 014302. doi: 10.7498/aps.72.20221748
    [2] 刘博, 邢朴, 丁松, 谢明军, 冯林, 时晓天. 一种新的可计算可压缩流动的预处理方法.  , 2022, 71(12): 124701. doi: 10.7498/aps.71.20220102
    [3] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性.  , 2022, 71(1): 014301. doi: 10.7498/aps.71.20211266
    [4] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性.  , 2021, (): . doi: 10.7498/aps.70.20211266
    [5] 张冬冬, 谭建国, 姚霄. 入流激励下可压缩剪切层中Kelvin-Helmholtz涡的响应特性.  , 2020, 69(2): 024701. doi: 10.7498/aps.69.20190681
    [6] 胡嘉懿, 张文欢, 柴振华, 施保昌, 汪一航. 三维不可压缩流的12速多松弛格子Boltzmann模型.  , 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [7] 路中磊, 魏英杰, 王聪, 曹伟. 开放空腔壳体入水扰动流场结构及空泡失稳特征.  , 2017, 66(6): 064702. doi: 10.7498/aps.66.064702
    [8] 甘才俊, 李烺, 马汉东, 熊红亮. 可压缩混合层光学传输效应理论分析与实验研究.  , 2014, 63(5): 054703. doi: 10.7498/aps.63.054703
    [9] 邱流潮. 基于不可压缩光滑粒子动力学的黏性液滴变形过程仿真.  , 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [10] 甘才俊, 李烺, 马汉东, 熊红亮. 可压缩混合层流场光学效应分析与实验研究.  , 2013, 62(18): 184701. doi: 10.7498/aps.62.184701
    [11] 姚熊亮, 叶曦, 张阿漫. 行波驱动下空泡在可压缩流场中的运动特性研究.  , 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [12] 吴海军, 蒋伟康, 鲁文波. 三维声学多层快速多极子边界元及其应用.  , 2012, 61(5): 054301. doi: 10.7498/aps.61.054301
    [13] 董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方. 超强飞秒激光尾波场加速产生58 MeV准单能电子束实验.  , 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [14] 王立锋, 叶文华, 范征锋, 孙彦乾, 郑炳松, 李英骏. 二维可压缩流体Kelvin-Helmholtz不稳定性.  , 2009, 58(9): 6381-6386. doi: 10.7498/aps.58.6381
    [15] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究.  , 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [16] 张碧星, 汪承灏, Anders Bostr?m. 压电条SH声辐射场研究.  , 2005, 54(5): 2111-2117. doi: 10.7498/aps.54.2111
    [17] 毕传兴, 陈心昭, 陈 剑. 半自由声场的全息重建和预测实验研究.  , 2004, 53(12): 4268-4276. doi: 10.7498/aps.53.4268
    [18] 俞慧丹, 赵凯华. 模拟可压缩流体的格子Boltzmann模型.  , 1999, 48(8): 1470-1476. doi: 10.7498/aps.48.1470
    [19] 石秉仁. 可压缩理想等离子体柱的稳定性.  , 1964, 20(8): 785-795. doi: 10.7498/aps.20.785
    [20] 卢鹤绂. 可压缩流体之散逸函数.  , 1951, 8(2): 143-149. doi: 10.7498/aps.8.143
计量
  • 文章访问数:  5876
  • PDF下载量:  635
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-18
  • 修回日期:  2013-02-11
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map