搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半干旱草原下垫面动量和感热总体输送系数参数化关系研究

岳平 张强 李耀辉 王润元 王胜 孙旭映

引用本文:
Citation:

半干旱草原下垫面动量和感热总体输送系数参数化关系研究

岳平, 张强, 李耀辉, 王润元, 王胜, 孙旭映

Bulk transfer coefficients of momentum and sensible heat over semiarid grassland surface and their parameterization scheme

Yue Ping, Zhang Qiang, Li Yao-Hui, Wang Run-Yuan, Wang Sheng, Sun Xu-Ying
PDF
导出引用
  • 本文利用锡林郭勒草原2008年春季近地层涡旋相关系统和铁塔的风、 温平均梯度观测资料, 分析了总体输送系数随梯度Richardson数的变化特征, 建立了动量总体输送系数随大气稳定度、近地层风速以及感热总体输送系数随大气稳定度和近地层气温的关系. 中性条件下, 半干旱草原植被下垫面动量总体输送系数与近地层大气动力状态之间存在明显的相互作用, 总体输送系数与近地面层风速之间满足二次曲线拟合关系; 风速较小时, 大气动力特征对地表粗糙度长度的改变不是很明显, 动量总体输送系数随气流增强而增大; 而当风速较大时, 强风速会使植被高度发生改变, 动量总体输送系数随气流增强而减小. 另外, 感热总体输送系数与近地层气温之间也存在二次曲线关系. 动量总体输送系数与近地层风速之间的关系、感热总体输送系数与近地层气温之间关系的建立为总体输送系数参数化提供了重要途径, 同时该方案避免了对动力学粗糙度长度和热力学粗糙度长度的求解.
    The momentum and heat transfer coefficients used in the atmospheric numerical models usually are taken as constants. In fact, the bulk transfer coefficients change not only with atmospheric stabilities, but also with the air motion and thermodynamic properties of the surface boundary layer. In this paper, the bulk transfer coefficients of momentum and sensible heat are determined by using the data observed by the eddy correlation system and those of the average wind velocity and temperature gradients over the Xilin Guole semiarid grassland in May, 2008. The relations between the bulk transfer coefficients and the gradients in Richardson numbers are analyzed, and the relationship between the bulk transfer coefficients and atmospheric stabilities is also studied. Finally, the changes of momentum bulk transfer coefficients with wind speed and the relations between sensible heat transfer coefficients and temperature are determined. Comparison with the eddy correlation method for observing transfer coefficients, there is a great difference between the computational values of typical Businger-Dyer similarity functions. The revised Monin-Obukhov similarity functions could significantly improve the accuracy of the transfer coefficients. Under the near neutral stratification, there was an obvious interaction between the land surface and the flow condition over semiarid regions. The momentum bulk transfer coefficient varies with the mean wind speed at 10 m according to the quadratic curve laws. Under the low wind velocity condition, the influence of the air flow on the roughness was not significant and the momentum transfer coefficient will increase with increasing wind velocity. While at the high wind speed, the momentum transfer coefficient will decrease with increasing wind velocity, for the air flow changes the roughness height of surface boundary layer. Under the near neutral stratification, there was a quadratic curve law between the temperature and the sensible heat transfer coefficient, which provides a useful parameterization scheme for sensible heat transfer coefficient. The new schemes could parameterize the turbulent fluxes with average wind velocity and temperature gradients data, and does not need to compute the roughness.
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB955304,2013CB430206)、国家自然科学基金(批准号:41075008,40830957)、中国博士后基金(批准号:20110490854)和中国气象局干旱气象科研基金(批准号:KYS2011BSKY01)课题的资助.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2012CB955304, 2013CB430206), the National Natural Science Foundation of China (Grant Nos. 41075008, 40830957), the China Postdoctoral Science Foundation (Grant No. 20110490854), and the Postdoctoral Science Foundation of the Institute of Arid Meteorology of CMA (Grant No. KYS2011BSKY01).
    [1]

    Zhang Q, Wei G A, Huang R H, Cao X Y 2002 Sci. China. D 45 468

    [2]

    Li H Q, Guo W D,Sun G D, Zhang Y C 2011 Acta Phys. Sin. 60 019201 (in Chinese) [李红祺, 郭维栋, 孙国栋, 张耀存 2011 60 019201]

    [3]

    Li H Y, Zhang Q, Wang C L, Zhao J H 2012 Acta Phys. Sin. 61 195201 (in Chinese) [李宏宇, 张强, 王春玲, 阳伏林, 赵建华 2012 61 195201]

    [4]

    Zhang Q, Li H Y 2010 Acta Phys. Sin. 59 716 (in Chinese) [张强, 李宏宇 2010 59 716]

    [5]

    Powell M D, Vickery P J, Reinhold T A 2003 Nature 422 279

    [6]

    Ambes R A , Keyers D 1979 Mon. Wea. Rev. 107 963

    [7]

    Deardorff J W 1968 J. Geophys. Res. 73 2549

    [8]

    Garratt J R 1977 Mon. Wea. Rev. 105 915

    [9]

    Louis J F 1979 Bound. Layer Meteorol. 17 187

    [10]

    UNO I, Cai X M, Steyn D G, Emori S 1995 Bound. Layer Meterol. 76 395

    [11]

    Denny A, Subrahamanyam D,Kunhikrishnan P, Radhika Ramachandran, Somayaji K, Venkatesh R, Bhat G, Singh A 2008 Bound.-Layer Meteorol. 126 297

    [12]

    Bhat G S , Thomas M A , Raju J V S, Chandrasekhara C P 2002 Bound.-Layer Meteorol. 106 263

    [13]

    Piers S, Hall F, Ranson K Jon, Margolis H, Kelly B, Baldocchi D, den Hartog G, Josef C, Ryan Michael G, Barry G, Patrick C, Lettenmaier D, Wickland D E 1995 Bull. Ameri. Meteorol. Soci. 76 1549

    [14]

    Ridder K De 2010 Bound.-Layer Meterol. 134 257

    [15]

    Zhang J A, Black P G, French J R, Drennan W M 2008 Geophys. Res. Lett. 35 L14813,

    [16]

    Rao K G, Narasimha R 1996 Geophys. Res. Let. 23 2617

    [17]

    Yue P, Zhang Q, Niu S J, Wang R Y, Sun X Y, Wang S 2012, Acta Phys. Sin. 61 219201 (in Chinese) [岳平, 张强, 牛生杰, 王润元, 孙旭映, 王胜 2012 61 219201]

    [18]

    Yue P, Niu S J, Hu Y Q ,Zhang Q 2010 Sci. China Ear. Sci. 53 773

    [19]

    Miao M Q, Qian J P 1996 Acta Meteorol. Sinica 54 95 (in Chinese) [苗曼倩, 钱峻屏 1996 气象学报 54 95]

    [20]

    Gao Z, Bian L, Zhou X 2003 J. Geophys. Res 108 4387

    [21]

    Garratt J R, Pielke R A 1989 Bound.-Layer Meteor. 48 377

    [22]

    Zhang Q, Zeng J, Yao T 2012 Chinese Sci. Bullet. 57 647 (in Chinese) [张强, 曾剑, 姚桐 2012 科学通报 57 647]

    [23]

    Ma Y M, Tsukamoto O, Wu X M, Tamagawa I, Wang J M, Ishikawa H, Hu Z Y, Gao H C 2000 Chinese J. Atmos. Sci. 24 23 (in Chinese) [马耀明, 塚本修, 吴晓鸣, 玉川一郎, 王介民, 石川裕彦, 胡泽勇, 高洪春 2000 大气科学 24 23]

    [24]

    Dyer A J 1974 Boundary-Layer Meteorol. 7 363

    [25]

    Stull R B 1988 An Introduction to Boundary Layer Meteorology (1st Edn.) (Dordrecht: Kluwer Academic Publishers) p280

    [26]

    Wouters H, De Ridder K, van Lipzing N P M 2012 Bound.-Layer M eteor. 145 539

    [27]

    Demuzere M, De Ridder K, van Lipzing N P M 2008 J. Geophys. Res. 113 1

    [28]

    Yang K, Tamai N, Koike T 2001 J. Appl. Meteorol. 40 1647

    [29]

    Li Y, Gao Z, Lenschow D H, Chen F 2010 Bound.-Layer Meteorol 137 153

    [30]

    Zhang Q, Wang S, Zhang J, Wang R Y, Liu H Y, Li Y Y 2009 Adv. Ear. Sci. 24 1185 (in Chinese) [张强, 王胜, 张杰, 王润元, 刘宏宜, 李岩英 2009 地球科学进展 24 1185]

    [31]

    Chen J Y,Wang J M, Mitsuaki H 1993 Chinese J. Atmos. Sci. 17 21 (in Chinese) [陈家宜, 王介民, 光田宁 1993 大气科学 17 21]

    [32]

    Kondo J, Yamazawa H 1986 Bound-Layer Meteorol. 35 331

    [33]

    Ban J, Gao Z, Lenschow D H2010 J. Geophys. Res 115 D01106

    [34]

    Guilloteau E 1998 Bound.-Layer Meteor. 87 147

    [35]

    Kondo J, Yamazawa H 1986 Bound.-Layer Meteorol. 35 331

  • [1]

    Zhang Q, Wei G A, Huang R H, Cao X Y 2002 Sci. China. D 45 468

    [2]

    Li H Q, Guo W D,Sun G D, Zhang Y C 2011 Acta Phys. Sin. 60 019201 (in Chinese) [李红祺, 郭维栋, 孙国栋, 张耀存 2011 60 019201]

    [3]

    Li H Y, Zhang Q, Wang C L, Zhao J H 2012 Acta Phys. Sin. 61 195201 (in Chinese) [李宏宇, 张强, 王春玲, 阳伏林, 赵建华 2012 61 195201]

    [4]

    Zhang Q, Li H Y 2010 Acta Phys. Sin. 59 716 (in Chinese) [张强, 李宏宇 2010 59 716]

    [5]

    Powell M D, Vickery P J, Reinhold T A 2003 Nature 422 279

    [6]

    Ambes R A , Keyers D 1979 Mon. Wea. Rev. 107 963

    [7]

    Deardorff J W 1968 J. Geophys. Res. 73 2549

    [8]

    Garratt J R 1977 Mon. Wea. Rev. 105 915

    [9]

    Louis J F 1979 Bound. Layer Meteorol. 17 187

    [10]

    UNO I, Cai X M, Steyn D G, Emori S 1995 Bound. Layer Meterol. 76 395

    [11]

    Denny A, Subrahamanyam D,Kunhikrishnan P, Radhika Ramachandran, Somayaji K, Venkatesh R, Bhat G, Singh A 2008 Bound.-Layer Meteorol. 126 297

    [12]

    Bhat G S , Thomas M A , Raju J V S, Chandrasekhara C P 2002 Bound.-Layer Meteorol. 106 263

    [13]

    Piers S, Hall F, Ranson K Jon, Margolis H, Kelly B, Baldocchi D, den Hartog G, Josef C, Ryan Michael G, Barry G, Patrick C, Lettenmaier D, Wickland D E 1995 Bull. Ameri. Meteorol. Soci. 76 1549

    [14]

    Ridder K De 2010 Bound.-Layer Meterol. 134 257

    [15]

    Zhang J A, Black P G, French J R, Drennan W M 2008 Geophys. Res. Lett. 35 L14813,

    [16]

    Rao K G, Narasimha R 1996 Geophys. Res. Let. 23 2617

    [17]

    Yue P, Zhang Q, Niu S J, Wang R Y, Sun X Y, Wang S 2012, Acta Phys. Sin. 61 219201 (in Chinese) [岳平, 张强, 牛生杰, 王润元, 孙旭映, 王胜 2012 61 219201]

    [18]

    Yue P, Niu S J, Hu Y Q ,Zhang Q 2010 Sci. China Ear. Sci. 53 773

    [19]

    Miao M Q, Qian J P 1996 Acta Meteorol. Sinica 54 95 (in Chinese) [苗曼倩, 钱峻屏 1996 气象学报 54 95]

    [20]

    Gao Z, Bian L, Zhou X 2003 J. Geophys. Res 108 4387

    [21]

    Garratt J R, Pielke R A 1989 Bound.-Layer Meteor. 48 377

    [22]

    Zhang Q, Zeng J, Yao T 2012 Chinese Sci. Bullet. 57 647 (in Chinese) [张强, 曾剑, 姚桐 2012 科学通报 57 647]

    [23]

    Ma Y M, Tsukamoto O, Wu X M, Tamagawa I, Wang J M, Ishikawa H, Hu Z Y, Gao H C 2000 Chinese J. Atmos. Sci. 24 23 (in Chinese) [马耀明, 塚本修, 吴晓鸣, 玉川一郎, 王介民, 石川裕彦, 胡泽勇, 高洪春 2000 大气科学 24 23]

    [24]

    Dyer A J 1974 Boundary-Layer Meteorol. 7 363

    [25]

    Stull R B 1988 An Introduction to Boundary Layer Meteorology (1st Edn.) (Dordrecht: Kluwer Academic Publishers) p280

    [26]

    Wouters H, De Ridder K, van Lipzing N P M 2012 Bound.-Layer M eteor. 145 539

    [27]

    Demuzere M, De Ridder K, van Lipzing N P M 2008 J. Geophys. Res. 113 1

    [28]

    Yang K, Tamai N, Koike T 2001 J. Appl. Meteorol. 40 1647

    [29]

    Li Y, Gao Z, Lenschow D H, Chen F 2010 Bound.-Layer Meteorol 137 153

    [30]

    Zhang Q, Wang S, Zhang J, Wang R Y, Liu H Y, Li Y Y 2009 Adv. Ear. Sci. 24 1185 (in Chinese) [张强, 王胜, 张杰, 王润元, 刘宏宜, 李岩英 2009 地球科学进展 24 1185]

    [31]

    Chen J Y,Wang J M, Mitsuaki H 1993 Chinese J. Atmos. Sci. 17 21 (in Chinese) [陈家宜, 王介民, 光田宁 1993 大气科学 17 21]

    [32]

    Kondo J, Yamazawa H 1986 Bound-Layer Meteorol. 35 331

    [33]

    Ban J, Gao Z, Lenschow D H2010 J. Geophys. Res 115 D01106

    [34]

    Guilloteau E 1998 Bound.-Layer Meteor. 87 147

    [35]

    Kondo J, Yamazawa H 1986 Bound.-Layer Meteorol. 35 331

  • [1] 戴伟鹏, 贺衎, 侯晋川. 基于Rényi-α熵的参数化纠缠度量.  , 2024, 73(4): 040303. doi: 10.7498/aps.73.20231503
    [2] 陈浩宇, 徐涛, 刘闯, 张子柯, 詹秀秀. 基于高阶信息的网络相似性比较方法.  , 2024, 73(3): 038901. doi: 10.7498/aps.73.20231096
    [3] 王伟, 出口祥啓, 何永森, 张家忠. 涡脱落热声振荡中相似性及涡声锁频行为.  , 2019, 68(23): 234303. doi: 10.7498/aps.68.20190663
    [4] 杨剑楠, 刘建国, 郭强. 基于层间相似性的时序网络节点重要性研究.  , 2018, 67(4): 048901. doi: 10.7498/aps.67.20172255
    [5] 蔡俊, 李学彬, 詹国伟, 武鹏飞, 徐春燕, 青春, 吴晓庆. 一个新的海边光学湍流外尺度和Cn2的廓线模式.  , 2018, 67(1): 014206. doi: 10.7498/aps.67.20171324
    [6] 马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁. 高速模型尾迹流场及其电磁散射特性相似性实验研究.  , 2017, 66(10): 102401. doi: 10.7498/aps.66.102401
    [7] 陆金波, 侯晓荣, 罗敏. 一类Hopf分岔系统的通用鲁棒稳定控制器设计方法.  , 2016, 65(6): 060502. doi: 10.7498/aps.65.060502
    [8] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究.  , 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [9] 王启光, 苏海晶, 支蓉, 冯爱霞. 长江中下游汛期降水模式预测误差相似性及其可预报度.  , 2014, 63(11): 119202. doi: 10.7498/aps.63.119202
    [10] 付洋洋, 罗海云, 邹晓兵, 王强, 王新新. 棒-板电极下缩比气隙辉光放电相似性的仿真研究.  , 2014, 63(9): 095206. doi: 10.7498/aps.63.095206
    [11] 付洋洋, 罗海云, 邹晓兵, 刘凯, 王新新. 缩比间隙中辉光放电相似性的初步研究.  , 2013, 62(20): 205209. doi: 10.7498/aps.62.205209
    [12] 何明元, 杜华栋, 龙智勇, 黄思训. 大气廓线参数反演中基于大气可反演指数的正则化参数选择方法.  , 2012, 61(2): 024205. doi: 10.7498/aps.61.024205
    [13] 屈卫卫, 张高龙, 乐小云. 利用双折叠模型对弹核为的熔合垒高度和位置的系统学分析.  , 2012, 61(15): 152501. doi: 10.7498/aps.61.152501
    [14] 岳平, 张强, 牛生杰, 王润元, 孙旭映, 王胜. 草原下垫面湍流动量和感热相似性函数及总体输送系数的特征.  , 2012, 61(21): 219201. doi: 10.7498/aps.61.219201
    [15] 郑雨军, 张兆玉, 张西忠. 单分子体系动力学的高阶累积量相似性.  , 2009, 58(12): 8194-8198. doi: 10.7498/aps.58.8194
    [16] 龚志强, 封国林. 基于非线性分析方法的多种代用资料的相似性研究.  , 2007, 56(6): 3619-3629. doi: 10.7498/aps.56.3619
    [17] 童永在, 王西安, 余本海, 胡雪惠. 电光效应的自相似性.  , 2006, 55(12): 6667-6672. doi: 10.7498/aps.55.6667
    [18] 钟锡华. 自相似结构的谱函数.  , 1990, 39(6): 59-66. doi: 10.7498/aps.39.59
    [19] 丁秀香, 梁九卿. 超导电子的角动量和磁通量子化.  , 1988, 37(11): 1752-1759. doi: 10.7498/aps.37.1752
    [20] 邱孝明. 非均匀等离子体湍流的重正化准线性理论(Ⅱ)——湍性等离子体中的共振扩散.  , 1980, 29(9): 1104-1109. doi: 10.7498/aps.29.1104
计量
  • 文章访问数:  7003
  • PDF下载量:  742
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-19
  • 修回日期:  2012-12-06
  • 刊出日期:  2013-05-05

/

返回文章
返回
Baidu
map