-
为了深入理解近紫外波段NEA GaN阴极的光谱响应特性, 在超高真空系统中对MOCVD生长的不同发射层厚度和掺杂浓度的三个样品进行激活实验, 并在线测试样品光谱响应. 利用反射式GaN阴极量子效率公式和最小二乘法对入射光波长为0.25—0.35 μ之间的 阴极响应量子效率实验数据进行拟合, 分别得到后界面复合速率和拟合直线L的斜率, 并使用量子效率公式对入射光波长为0.35 μ时的反射式GaN阴极光谱响应量子效率进行仿真. 结果表明, 后界面复合速率和直线v的斜率都能很好地反映GaN阴极的响应性能, 当GaN阴极后界面复合速率小于105 cm/s, 发射层的厚度取0.174—0.212 μ时, 阴极光谱响应性能最好.In order to understand the spectral response characteristic of the NEA GaN photocathodes at UVA band, three samples grown by MOCVD with different emission layer thickness and doping concentration were activated in the ultra-high vacuum system, and their spectral response were tested online. We fit the experimental quantum efficiency with illumination wavelength between 0.25—0.35 μ by the use of reflection-mode GaN photocathode quantum efficiency formula and the least square approximation method. The back-interface compound rate and the slope of fitting line L are gained and the reflection-mode GaN photocathodes quantum efficiency is simulated with incident light wavelength at 0.35 μ. The results show that the back-interface compound rate and the slope of the fitting line L can reflect GaN photocathode response performance. When the back-interface compound rate of GaN photocathode is less than 105 cm/s and the thickness of the emission layer is set between 0.174—0.212 μ, the photocathode has optimal spectral response performance.
-
Keywords:
- reflection-mode GaN /
- potential barrier /
- least square approximation /
- back-interface defects
[1] Fu X Q, Chang B K, Li B, Wang X H, Qiao J L 2011 Acta. Phys. Sin. 60 038503 (in Chinese) [付小倩, 常本康, 李飚, 王晓晖, 乔建良 2011 60 038503]
[2] Wang Y F, Yu L J, Ma Y 2011 Infrared Technology 33 715 (in Chinese) [王忆锋, 余连杰, 马钰 2011 红外技术 33 715]
[3] Razeghi M, Rogalski A 1996 J. Appl. Phys. 79 7433
[4] Zou J J, Gao P, Yang Z, Chang B K 2008 Acta. Photonica. Sin. 37 1113 (in Chinese) [邹继军, 高频, 杨智, 常本康 2008 光子学报 37 1113]
[5] Hong S K, Kim B J, Park H S, Park Y, Yoon S Y, Kim T I 1998 Journal of Crystal Growth 191 275
[6] Kumakura K, Makimoto T 2005 Appl. Phys. Lett. 86 052105
[7] Xiao J L, Chang B K, Qian Y S, Du X Q, Zhang Y J, Gao P, Wang X H, Guo X Y, Niu J, Gao Y T 2010 Acta. Phys. Sin. 59 3577 (in Chinese) [乔建良, 常本康, 钱芸生, 杜晓晴, 张益军, 高频, 王晓晖, 郭向阳, 牛军, 高有堂 2010 59 3577]
[8] Qian Y S 2000 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [钱芸生 2000 博士学位论文 (南京: 南京理工大学)]
[9] Li B, Xu Y, Chang B K, Du X Q, Wang X H, Gao P, Zhang J J 2011 Chin. J. Lasers. 38 0417001 (in Chinese) [李飚, 徐源, 常本康, 杜晓晴, 王晓晖, 高频, 张俊举 2011 中国激光 38 0417001]
[10] Qiao J L, Tian S, Chang B K, Du X Q, Gao P 2009 Acta. Phys. Sin. 58 5847 (in Chinese) [乔建良, 田思, 常本康, 杜晓晴, 高频 2009 58 5847]
[11] Du X Q, Chang B K 2009 Acta. Phys. Sin. 58 8643 (in Chinese) [杜晓晴, 常本康 2009 58 8643]
[12] Spicer W E 1993 International Symposium on Optics, Imaging and Instrumentation, Aan Diego, CA, July 11-16, 1999 p18
[13] Wang X H, Chang B K, Ren L, Gao P 2011 Appl. Phys. Lett. 98 082109
[14] Li B, Chang B K, Xu Y, Du X Q, Du Y J, Wang X H, Zhang J J 2011 Acta. Phys. Sin. 60 088503 (in Chinese) [李飚, 常本康, 徐源, 杜晓晴, 杜玉杰, 王晓晖, 张俊举 2011 60 088503]
[15] Qiao J L, Chang B K, Qian Y S, Du X Q, Wang X H, Guo X Y 2011 Acta. Phys. Sin. 60 017903 (in Chinese) [乔建良, 常本康, 钱芸生, 杜晓晴, 王晓晖, 郭向阳 2011 60 017903]
[16] Guo X Y, Chang B K, Wang X H, Zhang Y J, Yang M 2011 Acta. Phys. Sin. 60 058101 (in Chinese) [郭向阳, 常本康, 王晓晖, 张益军, 杨铭 2011 60 058101]
[17] Zou J J, Chang B K, Yang Z 2007 Acta. Phys. Sin. 56 2992 (in Chinese) [邹继军, 常本康, 杨智 2007 56 2992]
[18] Yang Z, Zou J J, Chang B K 2010 Acta. Phys. Sin. 59 4290 (in Chinese) [杨智, 邹继军, 常本康 2010 59 4290]
-
[1] Fu X Q, Chang B K, Li B, Wang X H, Qiao J L 2011 Acta. Phys. Sin. 60 038503 (in Chinese) [付小倩, 常本康, 李飚, 王晓晖, 乔建良 2011 60 038503]
[2] Wang Y F, Yu L J, Ma Y 2011 Infrared Technology 33 715 (in Chinese) [王忆锋, 余连杰, 马钰 2011 红外技术 33 715]
[3] Razeghi M, Rogalski A 1996 J. Appl. Phys. 79 7433
[4] Zou J J, Gao P, Yang Z, Chang B K 2008 Acta. Photonica. Sin. 37 1113 (in Chinese) [邹继军, 高频, 杨智, 常本康 2008 光子学报 37 1113]
[5] Hong S K, Kim B J, Park H S, Park Y, Yoon S Y, Kim T I 1998 Journal of Crystal Growth 191 275
[6] Kumakura K, Makimoto T 2005 Appl. Phys. Lett. 86 052105
[7] Xiao J L, Chang B K, Qian Y S, Du X Q, Zhang Y J, Gao P, Wang X H, Guo X Y, Niu J, Gao Y T 2010 Acta. Phys. Sin. 59 3577 (in Chinese) [乔建良, 常本康, 钱芸生, 杜晓晴, 张益军, 高频, 王晓晖, 郭向阳, 牛军, 高有堂 2010 59 3577]
[8] Qian Y S 2000 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [钱芸生 2000 博士学位论文 (南京: 南京理工大学)]
[9] Li B, Xu Y, Chang B K, Du X Q, Wang X H, Gao P, Zhang J J 2011 Chin. J. Lasers. 38 0417001 (in Chinese) [李飚, 徐源, 常本康, 杜晓晴, 王晓晖, 高频, 张俊举 2011 中国激光 38 0417001]
[10] Qiao J L, Tian S, Chang B K, Du X Q, Gao P 2009 Acta. Phys. Sin. 58 5847 (in Chinese) [乔建良, 田思, 常本康, 杜晓晴, 高频 2009 58 5847]
[11] Du X Q, Chang B K 2009 Acta. Phys. Sin. 58 8643 (in Chinese) [杜晓晴, 常本康 2009 58 8643]
[12] Spicer W E 1993 International Symposium on Optics, Imaging and Instrumentation, Aan Diego, CA, July 11-16, 1999 p18
[13] Wang X H, Chang B K, Ren L, Gao P 2011 Appl. Phys. Lett. 98 082109
[14] Li B, Chang B K, Xu Y, Du X Q, Du Y J, Wang X H, Zhang J J 2011 Acta. Phys. Sin. 60 088503 (in Chinese) [李飚, 常本康, 徐源, 杜晓晴, 杜玉杰, 王晓晖, 张俊举 2011 60 088503]
[15] Qiao J L, Chang B K, Qian Y S, Du X Q, Wang X H, Guo X Y 2011 Acta. Phys. Sin. 60 017903 (in Chinese) [乔建良, 常本康, 钱芸生, 杜晓晴, 王晓晖, 郭向阳 2011 60 017903]
[16] Guo X Y, Chang B K, Wang X H, Zhang Y J, Yang M 2011 Acta. Phys. Sin. 60 058101 (in Chinese) [郭向阳, 常本康, 王晓晖, 张益军, 杨铭 2011 60 058101]
[17] Zou J J, Chang B K, Yang Z 2007 Acta. Phys. Sin. 56 2992 (in Chinese) [邹继军, 常本康, 杨智 2007 56 2992]
[18] Yang Z, Zou J J, Chang B K 2010 Acta. Phys. Sin. 59 4290 (in Chinese) [杨智, 邹继军, 常本康 2010 59 4290]
计量
- 文章访问数: 6119
- PDF下载量: 392
- 被引次数: 0