搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导线圈绕制过程的力学行为研究

李兰凯 王厚生 倪志鹏 程军胜 王秋良

引用本文:
Citation:

超导线圈绕制过程的力学行为研究

李兰凯, 王厚生, 倪志鹏, 程军胜, 王秋良

Mechanical stress in superconducting coils during winding process

Li Lan-Kai, Wang Hou-Sheng, Ni Zhi-Peng, Cheng Jun-Sheng, Wang Qiu-Liang
PDF
导出引用
  • 为了增加超导线圈中导线的占空比, 提高超导磁体正常运行时的机械稳定性, 通常在超导线圈绕制过程中施加一定的绕制张紧力. 绕制张紧力的大小会对超导磁体的失超特性和退化性能产生重要的影响, 因此有必要对绕制过程中的机械应力进行详细的分析. 本文仔细地分析了绕制过程中导线的受力情况, 进行了一些合理的假设和近似, 提出了研究超导线圈绕制应力的理论模型, 并根据轴对称结构的弹性力学方程式推导了计算超导线圈应力应变分布的理论公式. 基于该模型分别研究了单一绕组的超导线圈和双绕组的超导线圈的绕制应力, 分析了绕制张紧力和绕组的各向异性特性对径向应力和环向应力的影响. 在该理论模型分析结果的基础上可以进一步分析多物理场作用下的超导磁体的应力应变行为, 为高性能超导线圈的设计和建造提供理论指导.
    In order to increase the filling factor of conductor in superconducting coils and improve the mechanical stability of superconducting magnet, the pre-tension is always applied to the conductor during winding the coils. Because the winding pre-tension has a great effect on the quench and degradation performance of superconducting magnet, it is necessary to analyze the mechanical stress caused by the fabrication. First, the winding physical process of conductor is analyzed. Then the theoretical model is developed to calculate the winding stress of superconducting coils based on some reasonable assumptions and approximations. And some formulas used for stress and strain are derived from the theory of elastic mechanics. Two kinds of superconducting coils (one consists of one type of wire, and the other one consists of two types of wires.) are researched according to the model. The effects of winding pre-stress and material anisotropy on radial stress and hoop stress in superconducting coils are also analyzed. On the basis of the analyzed results, one can further research the stress and strain of superconducting coils under the effect of multiphysics and give some theoretical suggestions for the design and construction of superconducting coils.
    • 基金项目: 国家重大科研装备研制项目(批准号: ZDYZ2010-2)资助的课题.
    • Funds: Project supported by the Instrument Developing Project of China (Grant No. ZDYZ010-2).
    [1]

    Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701

    [2]

    Fu R, Brey W W, Shetty K, Gorkov P, Saha S, Long J R, Grant S C, Chekmenev E Y, Hu J, Gan Z, Sharma M, Zhang F, Logan T M, Brschweller R, Ediscon A, Blue A, Dixon I R, Markiewicz W D, Gross A 2005 J. Magn. Reson. 177 1

    [3]

    Iwasa Y 1992 IEEE Tran. Magn. 28 113

    [4]

    Winlson M N 1983 Superconducting Magnet (New York: Oxford University Press)

    [5]

    Iwasa Y 1991 Cryogenics 31 575

    [6]

    Yasaka Y, Iwasa Y 1984 Cryogenics 24 423

    [7]

    Bobrov E, Williams J 1981 IEEE Tran. Magn. 17 447

    [8]

    Iwasa Y 2009 Case Studies in Superconducting Magnets (2nd ed) (New York: Springer Science)

    [9]

    Ohira S, Nishijima S 2001 IEEE Tran. Appl. Supercon. 11 1474

    [10]

    Melville D, Mattocks P G 1972 J. Phy. D: Appl. Phys. 5 1745

    [11]

    Arp V 1977 J. Appl. Phys. 48 2026

    [12]

    Markiewicz W D, Vaghar M R, Dixon I R, Garmestani H 1994 IEEE Tran. Magn. 30 2233

    [13]

    Mulhall B E, Prothero D H 1973 J. Phy. D: Appl. Phys. 6 1973

    [14]

    Caldwell J 1982 Appl. Math. Modelling 6 157

    [15]

    Kokavec J, Cesnak L 1977 J. Phy. D: Appl. Phys. 10 1451

    [16]

    Pan H, Liu X K, Wu H, Guo X L, Xu F X, Wang L, Green M A 2010 Atomic Energy Science and Technology 44 611 (in Chinese) [潘衡, 刘孝坤, 吴红, 郭兴龙, 徐风雨, 王莉, Green M A 2010 原子能科学与技术 44 611]

    [17]

    Jones R M 1999 Mechanics of Composite Materials (Blacksburg: Taylor & Francis)

    [18]

    Wang Q L 2006 High Field Superconducting Magnet Science (Beijing: Science Press) (in Chinese) [王秋良 2006 高磁场超导磁体科学 (北京: 科学出版社)]

  • [1]

    Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701

    [2]

    Fu R, Brey W W, Shetty K, Gorkov P, Saha S, Long J R, Grant S C, Chekmenev E Y, Hu J, Gan Z, Sharma M, Zhang F, Logan T M, Brschweller R, Ediscon A, Blue A, Dixon I R, Markiewicz W D, Gross A 2005 J. Magn. Reson. 177 1

    [3]

    Iwasa Y 1992 IEEE Tran. Magn. 28 113

    [4]

    Winlson M N 1983 Superconducting Magnet (New York: Oxford University Press)

    [5]

    Iwasa Y 1991 Cryogenics 31 575

    [6]

    Yasaka Y, Iwasa Y 1984 Cryogenics 24 423

    [7]

    Bobrov E, Williams J 1981 IEEE Tran. Magn. 17 447

    [8]

    Iwasa Y 2009 Case Studies in Superconducting Magnets (2nd ed) (New York: Springer Science)

    [9]

    Ohira S, Nishijima S 2001 IEEE Tran. Appl. Supercon. 11 1474

    [10]

    Melville D, Mattocks P G 1972 J. Phy. D: Appl. Phys. 5 1745

    [11]

    Arp V 1977 J. Appl. Phys. 48 2026

    [12]

    Markiewicz W D, Vaghar M R, Dixon I R, Garmestani H 1994 IEEE Tran. Magn. 30 2233

    [13]

    Mulhall B E, Prothero D H 1973 J. Phy. D: Appl. Phys. 6 1973

    [14]

    Caldwell J 1982 Appl. Math. Modelling 6 157

    [15]

    Kokavec J, Cesnak L 1977 J. Phy. D: Appl. Phys. 10 1451

    [16]

    Pan H, Liu X K, Wu H, Guo X L, Xu F X, Wang L, Green M A 2010 Atomic Energy Science and Technology 44 611 (in Chinese) [潘衡, 刘孝坤, 吴红, 郭兴龙, 徐风雨, 王莉, Green M A 2010 原子能科学与技术 44 611]

    [17]

    Jones R M 1999 Mechanics of Composite Materials (Blacksburg: Taylor & Francis)

    [18]

    Wang Q L 2006 High Field Superconducting Magnet Science (Beijing: Science Press) (in Chinese) [王秋良 2006 高磁场超导磁体科学 (北京: 科学出版社)]

  • [1] 邢海英, 郑智健, 张子涵, 吴文静, 郭志英. 应力调控BlueP/X Te2 (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究.  , 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [2] 梁宇皓, 范丽珍. 固态锂电池中的机械力学失效及解决策略.  , 2020, 69(22): 226201. doi: 10.7498/aps.69.20200713
    [3] 张金帅, 黄秋实, 蒋励, 齐润泽, 杨洋, 王风丽, 张众, 王占山. 低温退火的X射线W/Si多层膜应力和结构性能.  , 2016, 65(8): 086101. doi: 10.7498/aps.65.086101
    [4] 李细莲, 刘刚, 杜桃园, 赵晶, 吴木生, 欧阳楚英, 徐波. 应力对硅烯上锂吸附的影响.  , 2014, 63(21): 217101. doi: 10.7498/aps.63.217101
    [5] 郭子政, 邓海东, 黄佳声, 熊万杰, 徐初东. 应力调制的自旋转矩临界电流.  , 2014, 63(13): 138501. doi: 10.7498/aps.63.138501
    [6] 李佳, 房奇, 罗炳池, 周民杰, 李恺, 吴卫东. Be薄膜应力的X射线掠入射侧倾法分析.  , 2013, 62(14): 140701. doi: 10.7498/aps.62.140701
    [7] 郭子政, 胡旭波. 应力对铁磁薄膜磁滞损耗和矫顽力的影响.  , 2013, 62(5): 057501. doi: 10.7498/aps.62.057501
    [8] 王程, 王冠宇, 张鹤鸣, 宋建军, 杨晨东, 毛逸飞, 李永茂, 胡辉勇, 宣荣喜. 单轴、双轴应变Si拉曼谱应力模型.  , 2012, 61(4): 047203. doi: 10.7498/aps.61.047203
    [9] 孙云, 王圣来, 顾庆天, 许心光, 丁建旭, 刘文洁, 刘光霞, 朱胜军. 利用高分辨X射线衍射研究磷酸二氢钾晶体晶格应变应力.  , 2012, 61(21): 210203. doi: 10.7498/aps.61.210203
    [10] 刘红婕, 黄进, 王凤蕊, 周信达, 蒋晓东, 吴卫东. 熔石英表面热致应力对激光损伤行为影响的研究.  , 2010, 59(2): 1308-1313. doi: 10.7498/aps.59.1308
    [11] 谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华. 高场应力及栅应力下AlGaN/GaN HEMT器件退化研究.  , 2009, 58(1): 511-517. doi: 10.7498/aps.58.511
    [12] 熊传兵, 江风益, 方文卿, 王 立, 莫春兰. 硅衬底GaN蓝色发光材料转移前后应力变化研究.  , 2008, 57(5): 3176-3181. doi: 10.7498/aps.57.3176
    [13] 李荣斌. 掺杂CVD金刚石薄膜的应力分析.  , 2007, 56(6): 3428-3434. doi: 10.7498/aps.56.3428
    [14] 朱振业, 王 彪, 郑 跃, 王 海, 李青坤, 李晨亮. 应力作用下铁电超晶格BaTiO3/SrTiO3的结构和极化的第一性原理研究.  , 2007, 56(10): 5986-5989. doi: 10.7498/aps.56.5986
    [15] 靳惠明, Felix Adriana, Aroyave Majorri. 离子注钇对镍900℃高温氧化行为及氧化膜性能的影响研究.  , 2006, 55(11): 6157-6162. doi: 10.7498/aps.55.6157
    [16] 陶永梅, 蒋 青, 曹海霞. 用横场伊辛模型研究应力对铁电薄膜的热力学性质的影响.  , 2005, 54(1): 274-279. doi: 10.7498/aps.54.274
    [17] 孙贤开, 林碧霞, 朱俊杰, 张 杨, 傅竹西. LP-MOCVD异质外延ZnO薄膜中的应力及对缺陷的影响.  , 2005, 54(6): 2899-2903. doi: 10.7498/aps.54.2899
    [18] 关庆丰, 安春香, 秦 颖, 邹建新, 郝胜志, 张庆瑜, 董 闯, 邹广田. 强流脉冲电子束应力诱发的微观结构.  , 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [19] 徐波, 余庆选, 吴气虹, 廖源, 王冠中, 方容川. 应力和掺杂对Mg:GaN薄膜光致发光光谱影响的研究.  , 2004, 53(1): 204-209. doi: 10.7498/aps.53.204
    [20] 方志军, 夏义本, 王林军, 张伟丽, 马哲国, 张明龙. Al2O3陶瓷衬底碳离子预注入对金刚石薄膜应力的影响研究.  , 2003, 52(4): 1028-1033. doi: 10.7498/aps.52.1028
计量
  • 文章访问数:  9272
  • PDF下载量:  1709
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-11
  • 修回日期:  2012-10-04
  • 刊出日期:  2013-03-05

/

返回文章
返回
Baidu
map