-
对于亚太赫兹波段扩展互作用振荡器(EIO),本文采用折叠波导作为慢波谐振系统, 研究了周期数对高频特性的影响,计算了特征阻抗、起振电流随周期数的变化规律,为有效降低起振电流提供了途径. 在此基础上,采用PIC进行模拟研究,探讨了EIO在弱电流连续波和强电流脉冲工作方式下的注波互作用和输出特性, 深入分析了EIO的周期数调谐、电压调谐的特性.在连续波工作时, EIO的输出功率约2.5 W; 在脉冲工作方式下,通过电压调谐, EIO的输出功率约2650 W,激发频率约105.26105.31 GHz. 采用慢走丝加工方法,探讨了高频系统的两种加工方式,测试了慢波系统的谐振特性、输出窗的传输特性, 并与模拟结果进行了对比分析,验证了该加工方法在该频段的可行性和实用性,为实用型整管研究提高了重要依据.In this paper, a folded waveguide is adopted as a slow wave structure (SWS) of the extended interaction oscillator (EIO). An EIO with frequency 105 GHz in sub-Terahertz band is studied in detail, including the dispersion relation and the impedance of the SWS, and the variation of starting current with the period number, which provides an effective way to reduce starting current. On this basis, from the PIC simulation studies are discussed the EIO beam-wave interaction and output characteristics under the operation modes of low current continuous wave and strong current pulse. Further, the tuning characteristic of the EIO is analyzed, showing that output power reaches 26-50 W and the corresponding frequency range is 105.26-105.31 GHz. By EDM technology two fabrication methods of the SWS are investigated and the transmission properties of the SWS and the window are tested indicating that they are in good agreement with the simulation results.
-
Keywords:
- extended interaction oscillator (EIO) /
- folded waveguide /
- output window /
- starting current
[1] Dave B, Peter H, Mark H, Albert R, Brian S 2005 Conf. 30th Infrared and Millimeter Waves and 13th Terahertz Electronics p84
[2] Albert R, Dave B, Mark H, Brian S 2007 Conf. 32th Infrared and Millimeter Waves and 15th Terahertz Electronics p892
[3] Mead J B, McIntosh R E 1990 IEEE Trans. Microwave Theory Tech. 38 1252
[4] Zhang K C, Wu Z H, Liu S G 2009 Journal of Infrared, Millimeter and Terahertz Waves 30 309
[5] Zhang K C, Wu Z H, Liu S G 2008 Chin. Phys. B 17 3402
[6] Zhang K C 2011 Acta Electronica Sinica 39 632 (in Chinese) [张开春 2011 电子学报 39 632]
[7] Wu Z H, Zhang K C, Liu S G 2010 Journal of University of Electronic Science and Technology of China 39 58 (in Chinese) [吴振华, 张开春, 刘盛纲 2010 电子科技大学学报 39 58]
[8] Zhang K C, Wu Z H, Yan Y, Huang Y, Li X Y, Liu S G 2010 Journal of Infrared, Millimeter and Terahertz Waves 31 543
[9] Wu Z H, Zhang K C, Liu S G 2009 Acta Electronica Sinica 37 2677 (in Chinese) [吴振华, 张开春, 刘盛纲 2009 电子学报 37 2677]
[10] Bllarrae S, Kory C L, Lee W J 2002 IEEE Int. Conf. Vacuum Electronics p26
[11] Bllarrae S, Booske J H, Kory C L 2004 IEEE Trans. Plasma Science 32 1002
[12] Zhang K C 2009 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [张开春 2009 博士学位论文(成都:电子科技大学)]
[13] Preist D H, Leidigh W J 1963 IEEE Trans. ED 3 201
-
[1] Dave B, Peter H, Mark H, Albert R, Brian S 2005 Conf. 30th Infrared and Millimeter Waves and 13th Terahertz Electronics p84
[2] Albert R, Dave B, Mark H, Brian S 2007 Conf. 32th Infrared and Millimeter Waves and 15th Terahertz Electronics p892
[3] Mead J B, McIntosh R E 1990 IEEE Trans. Microwave Theory Tech. 38 1252
[4] Zhang K C, Wu Z H, Liu S G 2009 Journal of Infrared, Millimeter and Terahertz Waves 30 309
[5] Zhang K C, Wu Z H, Liu S G 2008 Chin. Phys. B 17 3402
[6] Zhang K C 2011 Acta Electronica Sinica 39 632 (in Chinese) [张开春 2011 电子学报 39 632]
[7] Wu Z H, Zhang K C, Liu S G 2010 Journal of University of Electronic Science and Technology of China 39 58 (in Chinese) [吴振华, 张开春, 刘盛纲 2010 电子科技大学学报 39 58]
[8] Zhang K C, Wu Z H, Yan Y, Huang Y, Li X Y, Liu S G 2010 Journal of Infrared, Millimeter and Terahertz Waves 31 543
[9] Wu Z H, Zhang K C, Liu S G 2009 Acta Electronica Sinica 37 2677 (in Chinese) [吴振华, 张开春, 刘盛纲 2009 电子学报 37 2677]
[10] Bllarrae S, Kory C L, Lee W J 2002 IEEE Int. Conf. Vacuum Electronics p26
[11] Bllarrae S, Booske J H, Kory C L 2004 IEEE Trans. Plasma Science 32 1002
[12] Zhang K C 2009 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [张开春 2009 博士学位论文(成都:电子科技大学)]
[13] Preist D H, Leidigh W J 1963 IEEE Trans. ED 3 201
计量
- 文章访问数: 6953
- PDF下载量: 509
- 被引次数: 0