搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶界滞弹性弛豫理论的现代进展

郑宗文 徐庭栋 王凯 邵冲

引用本文:
Citation:

晶界滞弹性弛豫理论的现代进展

郑宗文, 徐庭栋, 王凯, 邵冲

Progress in the theory of grain boundary anelastic relaxation

Zheng Zong-Wen, Xu Ting-Dong, Wang Kai, Shao Chong
PDF
导出引用
  • 上世纪中期, 人们通过扭摆试验测量内耗, 发现晶界滞弹性弛豫峰. 后来尽管很多学者提出了各种理论模型, 但晶界滞弹性弛豫的微观机理仍然是不清楚的. 最近, Xu根据弹性应力引起晶界溶质偏聚或贫化实验结果, 提出了晶界滞弹性弛豫的微观机理是晶界吸收或发射空位, 建立了晶界滞弹性弛豫的平衡方程和动力学方程, 解析地表述了晶界滞弹性弛豫过程, 并成功地阐明了普遍存在于金属中的中温脆性峰温度移动现象. 本文将综述晶界滞弹性弛豫理论的这一现代发展.
    In the middle of last century, some scientists discovered grain-boundary anelastic relaxation (GAR) peaks by means of torsional pendulum. Later, various models about the origin of GAR peaks are established through further research. However, its micro-mechanism is still unclear. Recently, according to the results of solute grain boundary segregation or dilution caused by elastic stress, a micro-mechanism of GAR which is grain-boundary absorbing or emitting vacancies has been proposed. Then, the equilibrium equations and the kinetic equations of GAR are established, and the process of GAR is expressed analytically. Furthermore, it has successfully elaborated the intermediate temperature embrittlement peak movement which exists widely in metals. Those developments of GAR theory are reviewed in the present paper.
    • 基金项目: 国家自然科学基金(批准号: 51171050, 51001030)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51171050, 51001030).
    [1]

    Zener C (Translated by Kong Q P, Zhou B L, Qian Z Q, Ma Y L) 1965 Elastic and Anelastic of Metals (Beijing: Science Press) p3-40 (in Chinese) [C. 甄纳著, 孔庆平, 周本濂, 钱知强, 马应良译 1965 金属的弹性与滞弹性 (北京: 科学出版社) 第3—40页]

    [2]

    Ge T S 2000 Foundation of Solid Internal Friction Theory: Grain-Boundary Relaxation and Structure (Beijing: Science Press) p3-481 (in Chinese) [葛庭燧 2000 固体内耗理论基础: 晶界弛豫与晶界结构 第3—481页 (北京: 科学出版社)]

    [3]

    Weber W 1834 Poggendorff's Ann. 35 247

    [4]

    Weber W 1841 Poggendorff's Ann. 24 1

    [5]

    Meyer O 1874 Journ. Rein. U. Angew. Math. 78 130

    [6]

    Voigt W 1892 Ann. D. Phys. 47 671

    [7]

    Poynting J H, Thomson J J 1902 Properties of Matter (London)

    [8]

    Ke T S 1947 phy. Rev. 71 533

    [9]

    Leak G M 1961 Proc. Phys. Soc. 78 1520

    [10]

    Miles G W, Leak G M 1961 Proc. Phys. Soc. 78 1529

    [11]

    Gates R S 1973 Acta Met. 21 855

    [12]

    Ashmarin G M, Zhikharev A I, Shvedov Ye A 1977 Ⅸ Conferencija Metaloznawcka PAN Krakow 391

    [13]

    Sun Z Q, Ke T S 1981 J. de Physique 42 C5-451

    [14]

    Woirgard J, Riviere A 1981 J. De Fouquet, J. De Physique 42 C5-417

    [15]

    Woirgard J, Amirault J P, 1975 J. de Fouqnet: ICIFUACS-5 392

    [16]

    Bonetti E, Evangelista E, Gondi P, Tognato R 1976 Il Nuovo Cimento 33B 408

    [17]

    Bonetti E, Evangelista E, Gondi P, Tognato R 1977 Phys. Stat. Sol. A 39 661

    [18]

    Ke T S 1989/1990 Adv. Sci. China Phys. 3 1

    [19]

    Iwasaki K 1993 Mater. Sci. Forum 119/121 775

    [20]

    Ke T S 1998 J. Mater. Sci. Technol. 14 481

    [21]

    Ke T S 1990 Adv. Sci. China Phys. 3 1

    [22]

    Shinoda T, Nakamura T 1981 Acta Metall. 29 1631

    [23]

    Misra R D K 1996 Acta Mater. 44 885

    [24]

    Xu T D, Cheng B Y 2004 Prog. Mater. Sci. 49 109

    [25]

    Xu T D 2003 Philos. Mag. 83 889

    [26]

    Xu T D 2000 J. Mater. Sci. 35 5621

    [27]

    Xu T D 2002 Scripta. Mater. 46 759

    [28]

    Xu T D 2007 Philos. Mag. 87 1581

    [29]

    Xu T D 2006 Kinetics of Non-equilibrium Grain Boundary Segregation and Intergranular Brittle Fracture (Beijing: Science Press) p112 (in Chinese) [徐庭栋 2006 非平衡晶界偏聚动力学和晶间脆性断裂 第112页 (北京: 科学出版社)]

    [30]

    Xu T D 2009 Sci. China Ser. E-Tech. Sci. 52 1679

    [31]

    Xu T D, Zheng L 2004 Philo. Mag. Lett. 84 225

    [32]

    Kluge M D, Wolf D, Lutsko J F, Phillpot S R 1990 J. Appl. Phys. 67 2370

    [33]

    Xu T D, Zheng L, Wang K, Misra R D K Inter. Mater. Rev. (in press)

    [34]

    Bengough G D 1912 J. Inst. Met. 7 123

    [35]

    Xu T D 2009 10000 Scientific Difficulties: Physics (Beijing: Science Press) p523 (in Chinese) [徐庭栋 2009 "10000个科学难题·物理学卷" (北京: 科学出版社) 第523页]

    [36]

    Horikawa K, Kuramoto S, Kanno M 2001 Acta Mater. 49 3981

    [37]

    Otsuka M, Horiuchi R 1984 J. Jpn. Inst. Met. 48 688 (in Japanese)

    [38]

    Nowosielski R, Sakiewicz P, Mazurkiewicz J 2006 J. Ach. Mater. Manuf. Eng. 17 93

    [39]

    Sun D S, Yamane T, Hirao K 1991 J. Mater. Sci. 26 689

    [40]

    Sun D S, Yamane T, Hirao K 1991 J. Mater. Sci. 26 5767

    [41]

    ASTM International: 'Standard test methods for elevated temperature tension tests of metallic materials', ASTM International, Designation: E21-03a, approved Dec. 1, 2003

  • [1]

    Zener C (Translated by Kong Q P, Zhou B L, Qian Z Q, Ma Y L) 1965 Elastic and Anelastic of Metals (Beijing: Science Press) p3-40 (in Chinese) [C. 甄纳著, 孔庆平, 周本濂, 钱知强, 马应良译 1965 金属的弹性与滞弹性 (北京: 科学出版社) 第3—40页]

    [2]

    Ge T S 2000 Foundation of Solid Internal Friction Theory: Grain-Boundary Relaxation and Structure (Beijing: Science Press) p3-481 (in Chinese) [葛庭燧 2000 固体内耗理论基础: 晶界弛豫与晶界结构 第3—481页 (北京: 科学出版社)]

    [3]

    Weber W 1834 Poggendorff's Ann. 35 247

    [4]

    Weber W 1841 Poggendorff's Ann. 24 1

    [5]

    Meyer O 1874 Journ. Rein. U. Angew. Math. 78 130

    [6]

    Voigt W 1892 Ann. D. Phys. 47 671

    [7]

    Poynting J H, Thomson J J 1902 Properties of Matter (London)

    [8]

    Ke T S 1947 phy. Rev. 71 533

    [9]

    Leak G M 1961 Proc. Phys. Soc. 78 1520

    [10]

    Miles G W, Leak G M 1961 Proc. Phys. Soc. 78 1529

    [11]

    Gates R S 1973 Acta Met. 21 855

    [12]

    Ashmarin G M, Zhikharev A I, Shvedov Ye A 1977 Ⅸ Conferencija Metaloznawcka PAN Krakow 391

    [13]

    Sun Z Q, Ke T S 1981 J. de Physique 42 C5-451

    [14]

    Woirgard J, Riviere A 1981 J. De Fouquet, J. De Physique 42 C5-417

    [15]

    Woirgard J, Amirault J P, 1975 J. de Fouqnet: ICIFUACS-5 392

    [16]

    Bonetti E, Evangelista E, Gondi P, Tognato R 1976 Il Nuovo Cimento 33B 408

    [17]

    Bonetti E, Evangelista E, Gondi P, Tognato R 1977 Phys. Stat. Sol. A 39 661

    [18]

    Ke T S 1989/1990 Adv. Sci. China Phys. 3 1

    [19]

    Iwasaki K 1993 Mater. Sci. Forum 119/121 775

    [20]

    Ke T S 1998 J. Mater. Sci. Technol. 14 481

    [21]

    Ke T S 1990 Adv. Sci. China Phys. 3 1

    [22]

    Shinoda T, Nakamura T 1981 Acta Metall. 29 1631

    [23]

    Misra R D K 1996 Acta Mater. 44 885

    [24]

    Xu T D, Cheng B Y 2004 Prog. Mater. Sci. 49 109

    [25]

    Xu T D 2003 Philos. Mag. 83 889

    [26]

    Xu T D 2000 J. Mater. Sci. 35 5621

    [27]

    Xu T D 2002 Scripta. Mater. 46 759

    [28]

    Xu T D 2007 Philos. Mag. 87 1581

    [29]

    Xu T D 2006 Kinetics of Non-equilibrium Grain Boundary Segregation and Intergranular Brittle Fracture (Beijing: Science Press) p112 (in Chinese) [徐庭栋 2006 非平衡晶界偏聚动力学和晶间脆性断裂 第112页 (北京: 科学出版社)]

    [30]

    Xu T D 2009 Sci. China Ser. E-Tech. Sci. 52 1679

    [31]

    Xu T D, Zheng L 2004 Philo. Mag. Lett. 84 225

    [32]

    Kluge M D, Wolf D, Lutsko J F, Phillpot S R 1990 J. Appl. Phys. 67 2370

    [33]

    Xu T D, Zheng L, Wang K, Misra R D K Inter. Mater. Rev. (in press)

    [34]

    Bengough G D 1912 J. Inst. Met. 7 123

    [35]

    Xu T D 2009 10000 Scientific Difficulties: Physics (Beijing: Science Press) p523 (in Chinese) [徐庭栋 2009 "10000个科学难题·物理学卷" (北京: 科学出版社) 第523页]

    [36]

    Horikawa K, Kuramoto S, Kanno M 2001 Acta Mater. 49 3981

    [37]

    Otsuka M, Horiuchi R 1984 J. Jpn. Inst. Met. 48 688 (in Japanese)

    [38]

    Nowosielski R, Sakiewicz P, Mazurkiewicz J 2006 J. Ach. Mater. Manuf. Eng. 17 93

    [39]

    Sun D S, Yamane T, Hirao K 1991 J. Mater. Sci. 26 689

    [40]

    Sun D S, Yamane T, Hirao K 1991 J. Mater. Sci. 26 5767

    [41]

    ASTM International: 'Standard test methods for elevated temperature tension tests of metallic materials', ASTM International, Designation: E21-03a, approved Dec. 1, 2003

  • [1] 张学阳, 胡望宇, 戴雄英. 冲击下铁的各向异性对晶界附近相变的影响.  , 2024, 73(3): 036201. doi: 10.7498/aps.73.20231081
    [2] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化.  , 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [3] 夏文强, 赵彦, 刘振智, 鲁晓刚. 应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟.  , 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [4] 郭灿, 赵玉平, 邓英远, 张忠明, 徐春杰. 运动晶界与调幅分解相互作用过程的相场法研究.  , 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [5] 陈伟龙, 郭榕榕, 仝钰申, 刘莉莉, 周圣岚, 林金海. 亚禁带光照对CdZnTe晶体中晶界电场分布的影响.  , 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [6] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟.  , 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [7] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟.  , 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [8] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟.  , 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [9] 臧航, 黄智晟, 李涛, 郭荣明. 单晶六方SiC和多晶化学气相沉积SiC的常温辐照肿胀差异性.  , 2017, 66(6): 066104. doi: 10.7498/aps.66.066104
    [10] 王海燕, 高雪云, 任慧平, 张红伟, 谭会杰. 稀土La在-Fe中占位倾向及对晶界影响的第一性原理研究.  , 2014, 63(14): 148101. doi: 10.7498/aps.63.148101
    [11] 龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮. 不同对称性下晶界结构演化及微观机理的晶体相场法研究.  , 2013, 62(21): 218101. doi: 10.7498/aps.62.218101
    [12] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质.  , 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [13] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究.  , 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [14] 陈贤淼, 宋申华. 高温塑性变形引起的P非平衡晶界偏聚.  , 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [15] 胡志华, 连法增, 朱明刚, 李 卫. 烧结Nd-Fe-B磁体的微观结构和冲击韧性研究.  , 2008, 57(2): 1202-1206. doi: 10.7498/aps.57.1202
    [16] 刘贵立, 李荣德. ZA27合金晶界处铁、稀土元素的有序化与交互作用.  , 2006, 55(2): 776-779. doi: 10.7498/aps.55.776
    [17] 李培刚, 雷 鸣, 唐为华, 宋朋云, 陈晋平, 李玲红. 晶界对庞磁电阻颗粒薄膜的磁学和输运性能的影响.  , 2006, 55(5): 2328-2332. doi: 10.7498/aps.55.2328
    [18] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究.  , 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [19] 刘贵立, 李荣德. ZA27合金中稀土及铁的晶界偏聚与交互作用.  , 2004, 53(10): 3482-3486. doi: 10.7498/aps.53.3482
    [20] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟.  , 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
计量
  • 文章访问数:  10819
  • PDF下载量:  636
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-11
  • 修回日期:  2012-07-06
  • 刊出日期:  2012-12-05

/

返回文章
返回
Baidu
map