-
本文提出了流体-化学动理学二维正电晕放电混合模型, 该模型包含12种粒子间的27种化学反应, 并且考虑光电离的影响. 此外, 在实验室内对该模型开展试验验证, 单次脉冲波形及伏安特性曲线符合较好. 基于上述模型, 本文研究了在外施电压3 kV时棒-板电极正电晕放电过程中的电场分布、电子温度分布、 空间电荷分布的发展规律, 并对电晕放电过程中粒子的成分进行了详细分析, 讨论了电子、正负离子、中性粒子在放电过程中的生成规律及对电晕放电的影响. 结果表明: 在整个电晕放电过程中, 电子温度分布和电场强度分布曲线相似, 电子密度维持在1019 m-3左右, 只发现带正电的等离子体特征. O4+密度是放电过程中数量最多的正离子, O2+和N2+在二次电子发射过程中具有重要作用, O2- 离子和O分别是负离子和中性粒子中数量最多的粒子, 由于负离子和中性粒子在电晕放电过程中数量较小, 因而起的作用相对较小.Corona discharges are usually generated at sharp points, edges or on thin wires where the electric field is strongly concentrated. With the rapid development of extra and ultra high-voltage transmission lines, the air corona discharge becomes one of the critical problems associated with high-voltage lines, which can lead to the deterioration of insulation systems, power loss, radio noise. Corona discharge studies have been undertaken for many years, not only because of the scientific interest in the corona mechanism but also because of its practical engineering importance. Transient space charge distribution effect that is one of the important canses in the process of corona discharge, is closely related to the corona discharge mechanism and onset, self-sustaining. In this paper, we present an improved self-consistent, multi-component and two-dimensional plasma hybrid model for simulating the DC positive corona discharge under atmospheric environment. The model is based on the plasma hydrodynamics and the chemical dynamics, and it includes 12 species and 27 reactions. Besides, the photoionization effect is also considered in the proposed model. The simulation and the experiment on bar-plate electrode configuration with an inter-electrode gap of 5.0 mm at 2-5.5 kV are carried out. The discharge voltage-current characteristics and single pulse waveform are in good agreement with the experimental measurements. Based on this model, the electric field distribution, the electron temperature distribution, and the evolution of charged species distribution are investigated in detail. The results show that distributions of electron temperature and electric field have the same patterns, In the process of discharge, electron density is kept at 1019 m-3 or so. O4+ is dominant compared with the other charged heavy species, and O2+ and N2+ play the key role in secondary electron emission: the unmbers of O2- and O are the largest in negative ions and neutral particle respectively, they play a negligible role in discharge process.
-
Keywords:
- postive corona discharge /
- air /
- hybrid model /
- space charge
[1] Yang B C, Liu X B, Dai Y S 2002 High Voltage Engineering (Chongqing: Chongqing University Press) (in Chinese) [杨保初, 刘晓波, 戴玉松 2002 高电压技术 (重庆: 重庆大学出版社) ]
[2] Liu Z Y 2005 Ultra-Hig Grid (Beijing: China Economic Publishig) (in Chinese) [刘振亚 2005 特高压电网 (北京: 中国经济出版社)]
[3] Shu Y B, Hu Y 2007 Proceedings of the CSEE 27 1 (in Chinese) [舒印彪, 胡毅 2007 中国电机工程学报 27 1]
[4] Zheng Y S He J L, Zhang B 2011 High Voltage Engineering 3 752 (in Chinese) [郑跃胜, 何金良, 张波 2011 高电压技术 3 752]
[5] Qiu C R, Wang N Q 1994 Electrical Equipment Partial Discharge and Testing Technology (Beijing: China Machine Press) (in Chinese) [邱昌容, 王乃庆 1994 电工设备局部放电及其测试技术 (北京: 机械工业出版社) ]
[6] Bai X Y, Bai M D, Zhang Z T 2003 China Basic Science 6 30 (in Chinese) [白希尧, 白敏冬, 张芝涛 2003 中国基础科学 6 30]
[7] Michael A L Allan J L 2007 Plasma Discharge Principle and Materials Processing (Beijing: Science Press) (in Chinese) [迈克尔 A 力伯曼, 阿伦 J 里登伯格 2007 等离子体放电原理与材料处理 (北京: 科学出版社)]
[8] Hu Q, Shu L C, Jiang X L 2010 High Voltage Engineering 36 1669 (in Chinese) [胡琴, 舒立春, 蒋兴良 2010 高电压技术 36 1669]
[9] Liu Y P You S H, Lv F C 2010 High Voltage Engineering 36 2424 (in Chinese) [胡琴, 舒立春, 蒋兴良 2010 高电压技术 36 2424]
[10] Davies A J, Davies C S, Evans C J 1971 Proc. Inst. Electrical Eng. 118 816
[11] Passchier J D P Goedheer W J 1993 J. Appl. Phys. 73 1073
[12] Lymberopoulos D P, Economou D J 1993 J. Appl. Phys. 73 3668
[13] Lymberopoulos D P, Economou D J 1993 Appl. Phys. Lett. 63 2478
[14] Bera K, Farouk B, Lee Y H 1998 JSME International Journal 41 132
[15] Bera K, Farouk B, Lee Y H 1999 Plasma Sources Sci. Technol. 8 412
[16] Bera K, Farouk B, Lee Y H 1999 J. Electrochem. Soc. 146 3264
[17] Bera K, Farouk B, Vitello P 2001 J. Phys. D: Appl. Phys. 34 1479
[18] Agostino R D, Favia P, Oehr C Wertheimer M R 2005 Plasma Processes and Polymers 2 7
[19] Gordiets B F, Ferreira C M Guerra V L Loureiro J M A H Nahomy J 1995 IEEE Trans. Plasma Sci. 23 750
[20] Nahomy J, Ferreira C M, Gordiets B, Pagnon D, Touzeau M,Vialle M 2010 J. Phys. D: Appl. Phys 107 093304
[21] Zhang J, Adamiak K 2008 IEEE Trans. Ind. Appl. 44 494
[22] Hagelaar G J M Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
[23] Zheleznyak M D, Mnattskanyan A K 1977 Zhurnal Tekhnicheskoi Fiziki 47 2497
[24] Yu V S, Larsson A, Gubanski S M, Akyuz M 2001 J. Phys. D: Appl. Phys. 34 614
[25] Philip D N, Janzen A R, Aziz R A 1972 J. Chem. Phys. 57 1100
[26] Brokaw R S 1969 Ind. Eng. Chem. Process Des. 8 240
[27] Bird R B, Stewart W E, Lightfoot E N 1960 Transport Phenomena (Madison: Madison Press)
[28] Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015
[29] Curtiss C F, Bird R B 1999 Ind. Eng. Chem. Res. 38 2515
[30] Xu X J, Zhu D C 1996 Air Discharge Physical (Shanghai: Fudan University Press) (in Chinese) [徐学基, 诸定昌 1996 空气放电物理 (上海: 复旦大学出版社)]
[31] Yao P L 1994 Plasma Physics (Beijing: Science Press) (in Chinese) [姚平录 1994 等离子体物理学 (北京: 科学出版社)]
[32] Gordiets B F, Ferreira C M, Guerra V L, Louriero M 1995 IEEE Trans. Plasma Sci. 23 750
[33] Mahadev S, Raja L L 2010 J. Appl. Phys. 107 093304
[34] Liu X H, He W, Yang F, Xiao H G,Ma J 2011 High Voltage Engineering 37 1614 (in Chinese) [刘兴华, 何为, 杨帆, 肖汉光, 马俊 2011 高电压技术 37 1614]
[35] Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2009 IEEE Conf. on Electrical Insulation and Dielectric Phenomena Virginia USA, 2009 p559
[36] Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2011 J. Phys. D: Appl. Phys. 44 015203
[37] Li Q, Li H F, Sun X R, Zhang W Y, Wang H 2010 High Voltage Engineering 36 2739 (in Chinese) [李庆, 李海凤, 孙晓荣, 张文月, 王昊 2010 高电压技术 36 2739]
[38] Arkhipenko V I, Zgirovskii S M, Kirillov A A, Simonchick L V 2002 Plasma Phys. Rep. 28 858
[39] Marode E, Bastien F, Bakker M 1979 J. Appl. Phys. 50 140
[40] Sigmond R S 1984 J. Appl. Phys. 56 1355
-
[1] Yang B C, Liu X B, Dai Y S 2002 High Voltage Engineering (Chongqing: Chongqing University Press) (in Chinese) [杨保初, 刘晓波, 戴玉松 2002 高电压技术 (重庆: 重庆大学出版社) ]
[2] Liu Z Y 2005 Ultra-Hig Grid (Beijing: China Economic Publishig) (in Chinese) [刘振亚 2005 特高压电网 (北京: 中国经济出版社)]
[3] Shu Y B, Hu Y 2007 Proceedings of the CSEE 27 1 (in Chinese) [舒印彪, 胡毅 2007 中国电机工程学报 27 1]
[4] Zheng Y S He J L, Zhang B 2011 High Voltage Engineering 3 752 (in Chinese) [郑跃胜, 何金良, 张波 2011 高电压技术 3 752]
[5] Qiu C R, Wang N Q 1994 Electrical Equipment Partial Discharge and Testing Technology (Beijing: China Machine Press) (in Chinese) [邱昌容, 王乃庆 1994 电工设备局部放电及其测试技术 (北京: 机械工业出版社) ]
[6] Bai X Y, Bai M D, Zhang Z T 2003 China Basic Science 6 30 (in Chinese) [白希尧, 白敏冬, 张芝涛 2003 中国基础科学 6 30]
[7] Michael A L Allan J L 2007 Plasma Discharge Principle and Materials Processing (Beijing: Science Press) (in Chinese) [迈克尔 A 力伯曼, 阿伦 J 里登伯格 2007 等离子体放电原理与材料处理 (北京: 科学出版社)]
[8] Hu Q, Shu L C, Jiang X L 2010 High Voltage Engineering 36 1669 (in Chinese) [胡琴, 舒立春, 蒋兴良 2010 高电压技术 36 1669]
[9] Liu Y P You S H, Lv F C 2010 High Voltage Engineering 36 2424 (in Chinese) [胡琴, 舒立春, 蒋兴良 2010 高电压技术 36 2424]
[10] Davies A J, Davies C S, Evans C J 1971 Proc. Inst. Electrical Eng. 118 816
[11] Passchier J D P Goedheer W J 1993 J. Appl. Phys. 73 1073
[12] Lymberopoulos D P, Economou D J 1993 J. Appl. Phys. 73 3668
[13] Lymberopoulos D P, Economou D J 1993 Appl. Phys. Lett. 63 2478
[14] Bera K, Farouk B, Lee Y H 1998 JSME International Journal 41 132
[15] Bera K, Farouk B, Lee Y H 1999 Plasma Sources Sci. Technol. 8 412
[16] Bera K, Farouk B, Lee Y H 1999 J. Electrochem. Soc. 146 3264
[17] Bera K, Farouk B, Vitello P 2001 J. Phys. D: Appl. Phys. 34 1479
[18] Agostino R D, Favia P, Oehr C Wertheimer M R 2005 Plasma Processes and Polymers 2 7
[19] Gordiets B F, Ferreira C M Guerra V L Loureiro J M A H Nahomy J 1995 IEEE Trans. Plasma Sci. 23 750
[20] Nahomy J, Ferreira C M, Gordiets B, Pagnon D, Touzeau M,Vialle M 2010 J. Phys. D: Appl. Phys 107 093304
[21] Zhang J, Adamiak K 2008 IEEE Trans. Ind. Appl. 44 494
[22] Hagelaar G J M Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
[23] Zheleznyak M D, Mnattskanyan A K 1977 Zhurnal Tekhnicheskoi Fiziki 47 2497
[24] Yu V S, Larsson A, Gubanski S M, Akyuz M 2001 J. Phys. D: Appl. Phys. 34 614
[25] Philip D N, Janzen A R, Aziz R A 1972 J. Chem. Phys. 57 1100
[26] Brokaw R S 1969 Ind. Eng. Chem. Process Des. 8 240
[27] Bird R B, Stewart W E, Lightfoot E N 1960 Transport Phenomena (Madison: Madison Press)
[28] Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015
[29] Curtiss C F, Bird R B 1999 Ind. Eng. Chem. Res. 38 2515
[30] Xu X J, Zhu D C 1996 Air Discharge Physical (Shanghai: Fudan University Press) (in Chinese) [徐学基, 诸定昌 1996 空气放电物理 (上海: 复旦大学出版社)]
[31] Yao P L 1994 Plasma Physics (Beijing: Science Press) (in Chinese) [姚平录 1994 等离子体物理学 (北京: 科学出版社)]
[32] Gordiets B F, Ferreira C M, Guerra V L, Louriero M 1995 IEEE Trans. Plasma Sci. 23 750
[33] Mahadev S, Raja L L 2010 J. Appl. Phys. 107 093304
[34] Liu X H, He W, Yang F, Xiao H G,Ma J 2011 High Voltage Engineering 37 1614 (in Chinese) [刘兴华, 何为, 杨帆, 肖汉光, 马俊 2011 高电压技术 37 1614]
[35] Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2009 IEEE Conf. on Electrical Insulation and Dielectric Phenomena Virginia USA, 2009 p559
[36] Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2011 J. Phys. D: Appl. Phys. 44 015203
[37] Li Q, Li H F, Sun X R, Zhang W Y, Wang H 2010 High Voltage Engineering 36 2739 (in Chinese) [李庆, 李海凤, 孙晓荣, 张文月, 王昊 2010 高电压技术 36 2739]
[38] Arkhipenko V I, Zgirovskii S M, Kirillov A A, Simonchick L V 2002 Plasma Phys. Rep. 28 858
[39] Marode E, Bastien F, Bakker M 1979 J. Appl. Phys. 50 140
[40] Sigmond R S 1984 J. Appl. Phys. 56 1355
计量
- 文章访问数: 12090
- PDF下载量: 1392
- 被引次数: 0