搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场和量子点尺寸对激子性质的影响

沈曼 张亮 刘建军

引用本文:
Citation:

磁场和量子点尺寸对激子性质的影响

沈曼, 张亮, 刘建军

Effects of magneic field and quantum dot size on properties of exciton

Shen Man, Zhang Liang, Liu Jian-Jun
PDF
导出引用
  • 在In0.6Ga0.4As/GaAs量子点中, 采用一维等效势模型和有限差分法理论计算了激子态的性质, 得到了激子跃迁能和束缚能随磁场、横向束缚强度以及量子点尺寸的变化关系. 结果表明: 加入磁场后, Zeeman效应使得激子的能级简并度解除, 激子的基态跃迁能与实验符合得很好; 横向束缚强度或磁场强度的增加使得激子的束缚增强; 量子点的尺寸对激子的束缚产生重要的影响; 通过电子-空穴间平均距离以及激子体系波函数分布图像分析了其产生的物理机制.
    In In0.6Ga0.4As/GaAs quantum dot, using a one-dimensional effective potential model and the finite difference method, we theoretically study the properties of an exciton under the influence of an applied magnetic field, such as the transition energy, the binding energy, the spatial distributions of the electron and the hole. The effects due to the applied magnetic filed and the quantum confinement on the binding energy are analyzed, and the following results are obtained: the ground state transition energy of the heavy-hole exciton can split into four energy levels due to the Zeeman effect, of which the results are in good agreement with experimental results; the binding energy increases monotonically with the increase of lateral confinement or magnetic field; the size of the quantum dot has a significant influence on the binding energy of the exciton, which can be seen both from the average distance between the electron and the hole and from the wave function distributions of the exciton.
    • 基金项目: 国家自然科学基金(批准号: 61176089)和河北省自然科学基金(批准号: A2011205092)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61176089), and the Natural Science Foundation of Hebei Province, China (Grant No. A2011205092).
    [1]

    Belhadj T, Simon C M, Amand T, Renucci P, Chatel B, Krebs O, Lemaitre A, Voisin P, Marie, X, Urbaszek B 2009 Phys. Rev. Lett. 103 086601

    [2]

    Xiao Z G 1999 J. Appl. Phys. 86 4509

    [3]

    Gu J, Liang J Q 2004 Phys. Lett. A 323 132

    [4]

    Bennett A J, Pooley M A, Stevenson R M, Ward M B, Patel R B, Giroday A B, Sköld N, Farrer I, Nicoll C A, Ritchie D A , Shields A J 2010 Nature Phys. 6 947

    [5]

    Ortner G, Bayer M, Larionov A, Timofeev V B, Forchel A, Lyanda Y B, Reinecke T L, Hawrylak P, Fafard S, Wasilewski Z 2003 Phys. Rev. Lett. 90 086404

    [6]

    Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski M, Wasilewski Z R, Stern O, Forchel A 2001 Science 291 451

    [7]

    DiVincenzo D P, Bacon D, Kempe J, Burkard G, Whaley K B 2000 Nature 408 339

    [8]

    Rinaldi R, Mangino R, Cingolani R, Lipsanen H, Sopanen M, Tulkki J, Brasken M, Ahopelto J 1998 Phys. Rev. B 57 9763

    [9]

    Bednarek S, Szafran B, Chwiej T, Adamowski J 2003 Phys. Rev. B 68 045328

    [10]

    Nair S V, Sinha S, Rustagi K C 1987 Phys. Rev. B 35 4098

    [11]

    Kayanuma Y 1988 Phys. Rev. B 38 9797

    [12]

    Xia J B 1989 Phys. Rev. B 40 8500

    [13]

    Ramaniah L M, Nair S V 1993 Phys. Rev. B 47 7132

    [14]

    Hu Y Z, Lindberg M, Koch S W 1990 Phys. Rev. B 42 1713

    [15]

    Li S S, Xia J B 2008 Appl. Phys. Lett. 92 022102

    [16]

    Dong Q R, Niu Z C 2005 Acta Phys. Sin. 54 1794 (in Chinese) [董庆瑞, 牛智川 2005 54 1794]

    [17]

    Harju A, Sverdlov V A, Nieminen R M 1998 Europhys. Lett. 41 407

    [18]

    Filinov A V, Riva C, Peeters F M, Lozovik Y E, Bonitz M 2004 Phys. Rev. B 70 035323

    [19]

    Zhai L X, Liu J J 2007 J. Appl. Phys. 102 053706

    [20]

    Zhang H, Shen M, Liu J J 2008 J. Appl. Phys. 103 043705

    [21]

    Shen M, Liu J J 2011 J. Appl. Phys. 109 094313

    [22]

    Bayer M, Kuther A, Forchel A, Gorbunov A, Timofeev V B, Schafer F, Reithmaier J P, Reinecke T L, Walck S N 1999 Phys. Rev. Lett. 82 1748

  • [1]

    Belhadj T, Simon C M, Amand T, Renucci P, Chatel B, Krebs O, Lemaitre A, Voisin P, Marie, X, Urbaszek B 2009 Phys. Rev. Lett. 103 086601

    [2]

    Xiao Z G 1999 J. Appl. Phys. 86 4509

    [3]

    Gu J, Liang J Q 2004 Phys. Lett. A 323 132

    [4]

    Bennett A J, Pooley M A, Stevenson R M, Ward M B, Patel R B, Giroday A B, Sköld N, Farrer I, Nicoll C A, Ritchie D A , Shields A J 2010 Nature Phys. 6 947

    [5]

    Ortner G, Bayer M, Larionov A, Timofeev V B, Forchel A, Lyanda Y B, Reinecke T L, Hawrylak P, Fafard S, Wasilewski Z 2003 Phys. Rev. Lett. 90 086404

    [6]

    Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski M, Wasilewski Z R, Stern O, Forchel A 2001 Science 291 451

    [7]

    DiVincenzo D P, Bacon D, Kempe J, Burkard G, Whaley K B 2000 Nature 408 339

    [8]

    Rinaldi R, Mangino R, Cingolani R, Lipsanen H, Sopanen M, Tulkki J, Brasken M, Ahopelto J 1998 Phys. Rev. B 57 9763

    [9]

    Bednarek S, Szafran B, Chwiej T, Adamowski J 2003 Phys. Rev. B 68 045328

    [10]

    Nair S V, Sinha S, Rustagi K C 1987 Phys. Rev. B 35 4098

    [11]

    Kayanuma Y 1988 Phys. Rev. B 38 9797

    [12]

    Xia J B 1989 Phys. Rev. B 40 8500

    [13]

    Ramaniah L M, Nair S V 1993 Phys. Rev. B 47 7132

    [14]

    Hu Y Z, Lindberg M, Koch S W 1990 Phys. Rev. B 42 1713

    [15]

    Li S S, Xia J B 2008 Appl. Phys. Lett. 92 022102

    [16]

    Dong Q R, Niu Z C 2005 Acta Phys. Sin. 54 1794 (in Chinese) [董庆瑞, 牛智川 2005 54 1794]

    [17]

    Harju A, Sverdlov V A, Nieminen R M 1998 Europhys. Lett. 41 407

    [18]

    Filinov A V, Riva C, Peeters F M, Lozovik Y E, Bonitz M 2004 Phys. Rev. B 70 035323

    [19]

    Zhai L X, Liu J J 2007 J. Appl. Phys. 102 053706

    [20]

    Zhang H, Shen M, Liu J J 2008 J. Appl. Phys. 103 043705

    [21]

    Shen M, Liu J J 2011 J. Appl. Phys. 109 094313

    [22]

    Bayer M, Kuther A, Forchel A, Gorbunov A, Timofeev V B, Schafer F, Reithmaier J P, Reinecke T L, Walck S N 1999 Phys. Rev. Lett. 82 1748

  • [1] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合.  , 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [2] 李元和, 卓志瑶, 王健, 黄君辉, 李叔伦, 倪海桥, 牛智川, 窦秀明, 孙宝权. 金纳米颗粒调控量子点激子自发辐射速率.  , 2022, 71(6): 067804. doi: 10.7498/aps.71.20211863
    [3] 张金峰, 阿拉帕提·阿不力米提, 杨帆, 艾克拜尔·阿木提江, 唐诗生, 艾合买提·阿不力孜. 不同外加磁场中Kaplan-Shekhtman-Entin-Wohlman-Aharony相互作用对量子失协非马尔科夫演化的影响.  , 2021, 70(22): 223401. doi: 10.7498/aps.70.20211277
    [4] 李元和, 窦秀明, 孙宝权. 金纳米颗粒调控量子点激子自发辐射速率.  , 2021, (): . doi: 10.7498/aps.70.20211863
    [5] 王文静, 孟瑞璇, 李元, 高琨. 共轭聚合物中受激吸收与受激辐射的量子动力学研究.  , 2014, 63(19): 197901. doi: 10.7498/aps.63.197901
    [6] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响.  , 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [7] 王文娟, 王海龙, 龚谦, 宋志棠, 汪辉, 封松林. 外电场对InGaAsP/InP量子阱内激子结合能的影响.  , 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [8] 李文生, 孙宝权. 电场调谐InAs量子点荷电激子光学跃迁.  , 2013, 62(4): 047801. doi: 10.7498/aps.62.047801
    [9] 王艳文, 吴花蕊. 闪锌矿GaN/AlGaN量子点中激子态及光学性质的研究.  , 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [10] 张红, 张春元, 张慧亮, 刘建军. 外加磁场下抛物型量子线中的带电激子.  , 2011, 60(7): 077301. doi: 10.7498/aps.60.077301
    [11] 姜文龙, 孟昭晖, 丛林, 汪津, 王立忠, 韩强, 孟凡超, 高永慧. 双量子阱结构OLED效率和电流的磁效应.  , 2010, 59(9): 6642-6646. doi: 10.7498/aps.59.6642
    [12] 金 华, 刘 舒, 张振中, 张立功, 郑著宏, 申德振. (CdZnTe, ZnSeTe)/ZnTe复合量子阱中激子隧穿过程.  , 2008, 57(10): 6627-6630. doi: 10.7498/aps.57.6627
    [13] 张 红, 刘 磊, 刘建军. 对称GaAs/Al0.3Ga0.7As双量子阱中激子的束缚能.  , 2007, 56(1): 487-490. doi: 10.7498/aps.56.487
    [14] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布.  , 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [15] 谭华堂, 甘仲惟, 李高翔. 与压缩真空库耦合的单模腔内三量子点中激子纠缠.  , 2005, 54(3): 1178-1183. doi: 10.7498/aps.54.1178
    [16] 李玉现, 刘建军, 李伯臧. 量子点接触中的电导与热功率:磁场与温度的影响.  , 2005, 54(3): 1366-1369. doi: 10.7498/aps.54.1366
    [17] 董庆瑞, 牛智川. 垂直耦合自组织InAs双量子点中激子能的计算.  , 2005, 54(4): 1794-1798. doi: 10.7498/aps.54.1794
    [18] 王防震, 陈张海, 柳 毅, 黄少华, 柏利慧, 沈学础. CdSe/ZnSe超薄层中两类量子岛(点)之间的激子转移和它们的光学性质研究.  , 2005, 54(1): 434-438. doi: 10.7498/aps.54.434
    [19] 金 华, 张立功, 郑著宏, 孔祥贵, 安立楠, 申德振. ZnCdSe量子阱/CdSe量子点耦合结构中的激子隧穿过程.  , 2004, 53(9): 3211-3214. doi: 10.7498/aps.53.3211
    [20] 邵 军. 谱导数法在光谱研究GaInAs/InP和GaInP/AlGaInP多量子阱中的应用.  , 2003, 52(10): 2534-2540. doi: 10.7498/aps.52.2534
计量
  • 文章访问数:  7761
  • PDF下载量:  433
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-03
  • 修回日期:  2012-06-04
  • 刊出日期:  2012-11-05

/

返回文章
返回
Baidu
map