搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的用于合成孔径雷达图像相干斑抑制的双边滤波参数配置方法

李金才 黄斌 彭宇行

引用本文:
Citation:

一种改进的用于合成孔径雷达图像相干斑抑制的双边滤波参数配置方法

李金才, 黄斌, 彭宇行

A modified method to configure the parameters of the bilateral filtering for synthetic aperture radar image speckle reduction

Li Jin-Cai, Huang Bin, Peng Yu-Xing
PDF
导出引用
  • 双边滤波能够有效光滑合成孔径雷达图像, 同时保持边缘信息. 最优配置双边滤波参数一直非常困难. 本文作者曾提出了一种迭代参数配置方法, 具有高精度、高效率的特点, 但是该方法会出现迭代错误终止的情况. 本文提出了一种改进的参数配置方法, 能够确保获得最优折衷配置的参数, 并且给出了该方法收敛性的证明. 对真实合成孔径雷达图像的实验结果显示, 在迭代精度相同的情况下, 改进方法不仅能够获得与迭代方法相当的可视效果, 而且灰度值近似方差参数具有更高的精度; 随着迭代精度的提高, 改进方法比迭代方法有更快的收敛速度.
    Bilateral filtering can effectively smooth synthetic aperture radar (SAR) images with preserving the edges, but it is difficult to configure the parameters of bilateral filtering to the optimum. The iterative method to configure the parameters with high precision and efficiency has been presented, but the iterative process may be aborted incorrectly. In this paper, we present a modified configuration method to get the optimal trade-off parameters, and give the proof of the convergence of the method. The experimental results on real SAR images show that the modified method can not only obtain equivalent visibility as the iterative method, but also higher accuracy of the gray value similarity variance than that under identical iterative precision. With the iterative precision improved, the convergence rate of the modified method is faster than that of the iterative method.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB302601);国家高技术研究发展计划(批准号: 2011AA01A202)和国家自然科学基金(批准号: 41175025, 41105063, 60803039, 60970033)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB302601), the National High Technology Research and Development Program of China (Grant No. 2011AA01A202) and the National Natural Science Foundation of China (Grant Nos. 41175025, 41105063, 60803039, 60970033).
    [1]

    Jiang Z H, Huang S X, He R, Zhou C T 2011 Acta Phys. Sin. 60 068401 (in Chinese) [姜祝辉, 黄思训, 何然, 周晨腾 2011 60 068401]

    [2]

    Jiang Z H, Huang S X, Shi H Q, Zhang W, Wang B 2011 Acta Phys. Sin. 60 108402 (in Chinese) [姜祝辉, 黄思训, 石汉青, 张伟, 王彪 2011 60 108402]

    [3]

    Novak L M, Owirka G J, Weaver A L 1999 IEEE Trans. Aero. Elec. Sys. 35 157

    [4]

    Nico G, Leva D, Antonello G, Tarchi D 2004 IEEE Trans. Geosci. Remoto Sens. 42 1344

    [5]

    Siegert F, Hoffmann A A 2000 Remote. Sens. Environ. 72 64

    [6]

    McNairn H, Brisco B 2004 Can. J. Remote. Sens. 30 525

    [7]

    Thompson A A, Luscombe A P, James K, Fox P 2001 Proceedings of International Geoscience Remote Sensing Symposium Sydney, Australia, July 9-13 2001 p485

    [8]

    Askne J I H, Dammert P B G, Ulander L M H, Smith G 1997 IEEE Trans. Geosci. Remoto Sens. 35 25

    [9]

    Lee J S 1980 IEEE Trans. Pattern Anal. PAMI-2 165

    [10]

    Kuan D T, Sawchuk A A, Strand T C, Chavel P 1985 IEEE Trans. Anal. PAMI-7 165

    [11]

    Frost V S, Stiles J A, Shanmugan K S, Holtzman J C 1982 IEEE Trans. Pattern Anal. PAMI-4 157

    [12]

    Lee J S 1983 Computer Vision, Graphics, and Image Processing 24 255

    [13]

    Donoho D L 1995 IEEE Trans. Inform. Theory 41 613

    [14]

    Sveinsson J R, Benediktsson J A 2003 IEEE Trans. Geosci. Remoto Sens. 41 2404

    [15]

    Yu Y J, Acton S T 2002 IEEE Trans. Image Process. 11 1260

    [16]

    Aja-Fernández S, Alberola-López C 2006 IEEE Trans. Image Process. 15 2694

    [17]

    Krissian K, Westin C F, Kikinis R, Vosburgh K G 2007 IEEE Trans. Image Process. 16 1412

    [18]

    Liu G J, Zeng X P, Tian F C, Li Z Z, Chaibou K 2009 Signal Process. 89 2233

    [19]

    Tomasi C, Manduchi R 1998 Proceedings of the 6th IEEE International Conference on Computer Vision Bombay, India, January 4-7, 1998 p839

    [20]

    Zhang W G, Liu F, Jiao L C 2009 Electron. Lett. 45 781

    [21]

    Zhang W G, Zhang Q, Yang C S 2011 Electron. Lett. 47 286

    [22]

    Elad M 2002 IEEE Trans. Image Process. 11 1141

    [23]

    Barash D 2002 IEEE Trans. Pattern Anal. 24 844

    [24]

    Barash D, Comaniciu D 2004 Image. Vision Comput. 22 73

    [25]

    Li J C, Huang S X, Peng Y X, Zhang W M 2011 Proceedings of the 3th IEEE International Conference on Information Science and Engineering Yangzhou, China September 29-October 1, 2011 p778

    [26]

    Zhang B Y, Allebach J P 2008 IEEE Trans. Pattern Anal. 17 664

    [27]

    Li J C, Huang S X, Peng Y X, Zhang W M 2011 Proceedings of the 3th IEEE International Conference on Signal Processing Systems Yantai, China August 27-28, 2011 p305

    [28]

    Li J C, Huang S X, Peng Y X, Zhang W M 2012 Acta Phys. Sin. 61 119501 (in Chinese) [李金才, 黄思训, 彭宇行, 张卫民 2012 61 119501]

    [29]

    Oliver C, Quegan S 2004 Understanding Synthetic Aperture Radar Images (Raleigh: SciTech Publishing, Inc) p95

    [30]

    Zhang H, Wang C, Zhang B, Wu F, Yan D M 2009 High-Resolution SAR Image Target Recognition (Beijing: Science Press) p43-44 (in Chinese) [张红, 王超, 张波, 吴樊, 闫冬梅 2009 高分辨率SAR图像目标识别 (北京: 科学出版社) 第43-44页]

    [31]

    Kao W C, Chen Y J, Wang S H, Hsu C C, Huang C W 2005 Proceedings of the 18th IPPR Conference on Computer Vision, Graphics and Image Processing Taipei, China August 21-23, 2005 p630

    [32]

    Lee J S 1980 IEEE Trans. Pattern Anal. 2 165

  • [1]

    Jiang Z H, Huang S X, He R, Zhou C T 2011 Acta Phys. Sin. 60 068401 (in Chinese) [姜祝辉, 黄思训, 何然, 周晨腾 2011 60 068401]

    [2]

    Jiang Z H, Huang S X, Shi H Q, Zhang W, Wang B 2011 Acta Phys. Sin. 60 108402 (in Chinese) [姜祝辉, 黄思训, 石汉青, 张伟, 王彪 2011 60 108402]

    [3]

    Novak L M, Owirka G J, Weaver A L 1999 IEEE Trans. Aero. Elec. Sys. 35 157

    [4]

    Nico G, Leva D, Antonello G, Tarchi D 2004 IEEE Trans. Geosci. Remoto Sens. 42 1344

    [5]

    Siegert F, Hoffmann A A 2000 Remote. Sens. Environ. 72 64

    [6]

    McNairn H, Brisco B 2004 Can. J. Remote. Sens. 30 525

    [7]

    Thompson A A, Luscombe A P, James K, Fox P 2001 Proceedings of International Geoscience Remote Sensing Symposium Sydney, Australia, July 9-13 2001 p485

    [8]

    Askne J I H, Dammert P B G, Ulander L M H, Smith G 1997 IEEE Trans. Geosci. Remoto Sens. 35 25

    [9]

    Lee J S 1980 IEEE Trans. Pattern Anal. PAMI-2 165

    [10]

    Kuan D T, Sawchuk A A, Strand T C, Chavel P 1985 IEEE Trans. Anal. PAMI-7 165

    [11]

    Frost V S, Stiles J A, Shanmugan K S, Holtzman J C 1982 IEEE Trans. Pattern Anal. PAMI-4 157

    [12]

    Lee J S 1983 Computer Vision, Graphics, and Image Processing 24 255

    [13]

    Donoho D L 1995 IEEE Trans. Inform. Theory 41 613

    [14]

    Sveinsson J R, Benediktsson J A 2003 IEEE Trans. Geosci. Remoto Sens. 41 2404

    [15]

    Yu Y J, Acton S T 2002 IEEE Trans. Image Process. 11 1260

    [16]

    Aja-Fernández S, Alberola-López C 2006 IEEE Trans. Image Process. 15 2694

    [17]

    Krissian K, Westin C F, Kikinis R, Vosburgh K G 2007 IEEE Trans. Image Process. 16 1412

    [18]

    Liu G J, Zeng X P, Tian F C, Li Z Z, Chaibou K 2009 Signal Process. 89 2233

    [19]

    Tomasi C, Manduchi R 1998 Proceedings of the 6th IEEE International Conference on Computer Vision Bombay, India, January 4-7, 1998 p839

    [20]

    Zhang W G, Liu F, Jiao L C 2009 Electron. Lett. 45 781

    [21]

    Zhang W G, Zhang Q, Yang C S 2011 Electron. Lett. 47 286

    [22]

    Elad M 2002 IEEE Trans. Image Process. 11 1141

    [23]

    Barash D 2002 IEEE Trans. Pattern Anal. 24 844

    [24]

    Barash D, Comaniciu D 2004 Image. Vision Comput. 22 73

    [25]

    Li J C, Huang S X, Peng Y X, Zhang W M 2011 Proceedings of the 3th IEEE International Conference on Information Science and Engineering Yangzhou, China September 29-October 1, 2011 p778

    [26]

    Zhang B Y, Allebach J P 2008 IEEE Trans. Pattern Anal. 17 664

    [27]

    Li J C, Huang S X, Peng Y X, Zhang W M 2011 Proceedings of the 3th IEEE International Conference on Signal Processing Systems Yantai, China August 27-28, 2011 p305

    [28]

    Li J C, Huang S X, Peng Y X, Zhang W M 2012 Acta Phys. Sin. 61 119501 (in Chinese) [李金才, 黄思训, 彭宇行, 张卫民 2012 61 119501]

    [29]

    Oliver C, Quegan S 2004 Understanding Synthetic Aperture Radar Images (Raleigh: SciTech Publishing, Inc) p95

    [30]

    Zhang H, Wang C, Zhang B, Wu F, Yan D M 2009 High-Resolution SAR Image Target Recognition (Beijing: Science Press) p43-44 (in Chinese) [张红, 王超, 张波, 吴樊, 闫冬梅 2009 高分辨率SAR图像目标识别 (北京: 科学出版社) 第43-44页]

    [31]

    Kao W C, Chen Y J, Wang S H, Hsu C C, Huang C W 2005 Proceedings of the 18th IPPR Conference on Computer Vision, Graphics and Image Processing Taipei, China August 21-23, 2005 p630

    [32]

    Lee J S 1980 IEEE Trans. Pattern Anal. 2 165

  • [1] 王童, 童创明, 李西敏, 李昌泽. 分形粗糙面合成孔径雷达成像研究.  , 2016, 65(7): 070301. doi: 10.7498/aps.65.070301
    [2] 马超, 顾红, 苏卫民, 李传中. 改进的双曲等效法用于双站合成孔径雷达前视成像.  , 2014, 63(2): 028403. doi: 10.7498/aps.63.028403
    [3] 赵现斌, 严卫, 王迎强, 陆文, 马烁. 基于海面散射模型的全极化合成孔径雷达海洋环境探测关键技术参数设计仿真研究.  , 2014, 63(21): 218401. doi: 10.7498/aps.63.218401
    [4] 陈勇, 赵惠昌, 陈思, 张淑宁. 基于分数阶傅里叶变换的弹载SAR成像算法.  , 2014, 63(11): 118403. doi: 10.7498/aps.63.118403
    [5] 姜祝辉, 周晓中, 游小宝, 易欣, 黄为权. 合成孔径雷达反演海面风场变分模型分析.  , 2014, 63(14): 148401. doi: 10.7498/aps.63.148401
    [6] 朱磊, 韩天琪, 水鹏朗, 卫建华, 顾梅花. 一种抑制合成孔径雷达图像相干斑的各向异性扩散滤波方法.  , 2014, 63(17): 179502. doi: 10.7498/aps.63.179502
    [7] 艾未华, 严卫, 赵现斌, 刘文俊, 马烁. C波段机载合成孔径雷达海面风场反演新方法.  , 2013, 62(6): 068401. doi: 10.7498/aps.62.068401
    [8] 党文佳, 曾晓东, 冯喆珺. 目标粗糙对合成孔径激光雷达回波的退相干效应.  , 2013, 62(2): 024204. doi: 10.7498/aps.62.024204
    [9] 孙增国. 高分辨率合成孔径雷达图像的Gamma分布下最大后验概率降斑算法.  , 2013, 62(18): 180701. doi: 10.7498/aps.62.180701
    [10] 陈思, 赵惠昌, 张淑宁, 陈勇. 基于dechirp弹载SAR的改进后向投影算法.  , 2013, 62(21): 218405. doi: 10.7498/aps.62.218405
    [11] 李金才, 马自辉, 彭宇行, 黄斌. 基于图像熵的各向异性扩散相干斑噪声抑制.  , 2013, 62(9): 099501. doi: 10.7498/aps.62.099501
    [12] 艾未华, 孔毅, 赵现斌. 基于小波的多极化机载合成孔径雷达海面风向反演.  , 2012, 61(14): 148403. doi: 10.7498/aps.61.148403
    [13] 赵现斌, 孔毅, 严卫, 艾未华, 刘文俊. 机载合成孔径雷达海面风场探测辐射定标精度要求研究.  , 2012, 61(14): 148404. doi: 10.7498/aps.61.148404
    [14] 柴争义, 陈亮, 朱思峰. 混沌免疫多目标算法求解认知引擎参数优化问题.  , 2012, 61(5): 058801. doi: 10.7498/aps.61.058801
    [15] 李金才, 黄思训, 彭宇行, 张卫民. 一种用于合成孔径雷达图像相干斑抑制的双边滤波参数配置新方法.  , 2012, 61(11): 119501. doi: 10.7498/aps.61.119501
    [16] 姜祝辉, 黄思训, 何然, 周晨腾. 合成孔径雷达资料反演海面风场的正则化方法研究.  , 2011, 60(6): 068401. doi: 10.7498/aps.60.068401
    [17] 姜祝辉, 黄思训, 石汉青, 张伟, 王彪. 合成孔径雷达图像反演海面风向新方法的研究.  , 2011, 60(10): 108402. doi: 10.7498/aps.60.108402
    [18] 孙增国, 韩崇昭. 基于拖尾分布的高分辨率合成孔径雷达图像建模.  , 2010, 59(2): 998-1008. doi: 10.7498/aps.59.998
    [19] 孙增国, 韩崇昭. 基于区域分类、自适应滑动窗和结构检测的合成孔径雷达图像联合降斑算法.  , 2010, 59(5): 3210-3220. doi: 10.7498/aps.59.3210
    [20] 孙增国, 韩崇昭. 基于斑点噪声的拖尾Rayleigh分布的合成孔径雷达图像最大后验概率降噪.  , 2007, 56(8): 4565-4570. doi: 10.7498/aps.56.4565
计量
  • 文章访问数:  7143
  • PDF下载量:  507
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-27
  • 修回日期:  2012-07-04
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map