-
利用不变本征算符法, 计算低温下自旋为1/2的XY模型一维亚铁磁棱型链系统的元激发谱, 讨论在此系统中不同的特殊情形下的元激发能量, 从而给出体系的三个临界磁场强度的解析解HC1, HC2, Hpeak. 分析不同外磁场下 体系的磁化强度随温度的变化规律, 发现三个临界磁场强度的解析解HC1, HC2, Hpeak是正确的, 并从三个元激发对磁化强度的贡献进行了说明. 低温下磁化强度随外磁场的变化呈现1/3磁化平台. 体系的磁化率随温度或者外磁场的变化都出现了双峰现象. 这说明双峰源于二聚体分子内电子自旋平行排列的铁磁交换作 用能和二聚体与单基体分子间电子自旋反平行排列的反铁磁交换作用能, 热无序能, 外磁场强度相关的自旋磁矩势能之间的竞争.
-
关键词:
- 自旋为1/2的XY模型一维亚铁磁棱型链 /
- 磁化强度 /
- 磁化率 /
- 不变本征算符法
The elementary excitation spectra of the one-dimensional spin-1/2 XY model in the ferrimagnetic diamond chain at low temperature are calculated by using invariant eigenvector in this paper. And the elementary excitation energies in different cases are discussed. Therefore, analytic solutions of the three critical magnetic field intensities HC1, HC2 and Hpeak in the system are given. It is found that the analytic solutions of three critical magnetic field intensities are correct from the law of the magnetization changing with temperature under different external magnetic fields, and it is explained by the contributions of the three elementary excitations to the magnetization. The external magnetic field dependent magnetization presents a 1/3 magnetized plateau at low temperature. The variation of magnetic susceptibility either with temperature or with external magnetic field shows a double peak structure, this phenomenon indicates that the double peak structure originates from the competition among the ferromagnetic exchange interaction energy of intramolecular electronic spin parallel arrangement in dimer, the antiferromagnetic exchange interaction energy of intermolecular electronic spin antiparallel arrangement in dimer-monomer, the thermal disorder energy and the spin magnetic moment potential energy related to external magnetic field.-
Keywords:
- one-dimensional spin-1/2 XY model in the ferrimagnetic diamond chain /
- magnetization /
- magnetic susceptibility /
- invariant eigenvector method
[1] Shiomi D, Nishizawa M, Sato K, Takui T, Itoh K, Sakurai H, Izuoka A, Sugawara T 1997 J. Phys. Chem. B 101 3342
[2] Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T, Ohta H 2005 Phys. Rev. Lett. 94 227201
[3] Maekawa K, Shiomi D, Ise T, Sato K, Takui T 2005 J. Phys. Chem. B 109 9299
[4] Fu H H, Yao K L, Liu Z L 2006 Phys. Rev. B 73 104454
[5] Fu H H, Yao K L, Liu Z L 2006 Phys. Lett. A 358 443
[6] Jeschke H, Opahle I, Kandpal H, Valent R, Das H, Saha-Dasgupta T, Janson O, Rosner H, Brühl A, Wolf B, Lang M, Richter J, Hu S, Wang X, Peters R, Pruschke T, Honecker A 2011 Phys. Rev. Lett. 106 217201
[7] Rule K C, Wolter A U B, Sullow S, Tennant D A, Brühl A, Köhler S, Wolf B, Lang M, Schreuer J 2008 Phys. Rev. Lett. 100 117202
[8] Schollwöck U 2005 Rev. Mod. Phys. 77(1) 259
[9] Gu B, Su G 2007 Phys. Rev. B 75 174437
[10] Chen S, Wang Y P, Ning W Q, Wu C J, Lin H Q 2006 Phys. Rev. B 74 174424
[11] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
[12] Maisinger K, Schollwock U, Brehmer S, Mikeska H J, Shoji Y 1998 Phys. Rev. B 58 R5908
[13] Batista C D, Ortiz G 2001 Phys. Rev. Lett. 86 1082
[14] Fan H Y, Li C 2004 Phys. Lett. A 321 75
[15] Fan H Y, Wu H 2005 Mod. Phys. Lett. B 19 1361
[16] Fan H Y, Yuan H C, Wu H 2011 Invariant Eigen-Operator Method in Quantum Mechanics (Shanghai: Shanghai Jiao Tong University Press) pp175-193 (in Chinese) [范洪义, 袁洪春, 吴昊 2011 量子力学的不变本征算符方法 (上海: 上海交通大学出版社) 第175-193页]
[17] Schmidt K P, Uhrig G S 2003 Phys. Rev. Lett. 90 227204
[18] Derzhko O, Richter J, Krokhmalskii T, Zaburannyi O 2004 Phys. Rev. E 69 066112
[19] Venuti L C, Roncaglia M 2010 Phys. Rev. A 81 060101
[20] Schwalm W A, Schwalm M K, Giona M 1997 Phys. Rev. E 55 6741
[21] Bao S Q, Hu Z, Shen J L, Yang G Z 1996 Phys. Rev. B 53 735
[22] Gildenblat G 1985 Phys. Rev. B 32 3006
[23] Cavallo A, Cosenza F, de Cesare L 2002 Phys. Rev. B 66 174439
[24] Cavallo A, Cosenza F, de Cesare L 2001 Phys. Rev. Lett. 87 240602
[25] Wang Y Z, Zhang Z D 2002 Solid State Commun. 124 215
[26] Jacobs I S 1961 J. Appl. Phys. 32 61S
[27] He Z Z, Yutaka U 2008 Phys. Rev. B 77 052402
[28] Wang X, Zotos X, Karadamoglou J, Papanicolaou N 2000 Phys. Rev. B 61 14303
[29] Karadamoglou J, Papanicolaou N 1999 Phys. Rev. B 60 9477
[30] Sakai T 1999 Phys. Rev. B 60 6238
-
[1] Shiomi D, Nishizawa M, Sato K, Takui T, Itoh K, Sakurai H, Izuoka A, Sugawara T 1997 J. Phys. Chem. B 101 3342
[2] Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T, Ohta H 2005 Phys. Rev. Lett. 94 227201
[3] Maekawa K, Shiomi D, Ise T, Sato K, Takui T 2005 J. Phys. Chem. B 109 9299
[4] Fu H H, Yao K L, Liu Z L 2006 Phys. Rev. B 73 104454
[5] Fu H H, Yao K L, Liu Z L 2006 Phys. Lett. A 358 443
[6] Jeschke H, Opahle I, Kandpal H, Valent R, Das H, Saha-Dasgupta T, Janson O, Rosner H, Brühl A, Wolf B, Lang M, Richter J, Hu S, Wang X, Peters R, Pruschke T, Honecker A 2011 Phys. Rev. Lett. 106 217201
[7] Rule K C, Wolter A U B, Sullow S, Tennant D A, Brühl A, Köhler S, Wolf B, Lang M, Schreuer J 2008 Phys. Rev. Lett. 100 117202
[8] Schollwöck U 2005 Rev. Mod. Phys. 77(1) 259
[9] Gu B, Su G 2007 Phys. Rev. B 75 174437
[10] Chen S, Wang Y P, Ning W Q, Wu C J, Lin H Q 2006 Phys. Rev. B 74 174424
[11] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
[12] Maisinger K, Schollwock U, Brehmer S, Mikeska H J, Shoji Y 1998 Phys. Rev. B 58 R5908
[13] Batista C D, Ortiz G 2001 Phys. Rev. Lett. 86 1082
[14] Fan H Y, Li C 2004 Phys. Lett. A 321 75
[15] Fan H Y, Wu H 2005 Mod. Phys. Lett. B 19 1361
[16] Fan H Y, Yuan H C, Wu H 2011 Invariant Eigen-Operator Method in Quantum Mechanics (Shanghai: Shanghai Jiao Tong University Press) pp175-193 (in Chinese) [范洪义, 袁洪春, 吴昊 2011 量子力学的不变本征算符方法 (上海: 上海交通大学出版社) 第175-193页]
[17] Schmidt K P, Uhrig G S 2003 Phys. Rev. Lett. 90 227204
[18] Derzhko O, Richter J, Krokhmalskii T, Zaburannyi O 2004 Phys. Rev. E 69 066112
[19] Venuti L C, Roncaglia M 2010 Phys. Rev. A 81 060101
[20] Schwalm W A, Schwalm M K, Giona M 1997 Phys. Rev. E 55 6741
[21] Bao S Q, Hu Z, Shen J L, Yang G Z 1996 Phys. Rev. B 53 735
[22] Gildenblat G 1985 Phys. Rev. B 32 3006
[23] Cavallo A, Cosenza F, de Cesare L 2002 Phys. Rev. B 66 174439
[24] Cavallo A, Cosenza F, de Cesare L 2001 Phys. Rev. Lett. 87 240602
[25] Wang Y Z, Zhang Z D 2002 Solid State Commun. 124 215
[26] Jacobs I S 1961 J. Appl. Phys. 32 61S
[27] He Z Z, Yutaka U 2008 Phys. Rev. B 77 052402
[28] Wang X, Zotos X, Karadamoglou J, Papanicolaou N 2000 Phys. Rev. B 61 14303
[29] Karadamoglou J, Papanicolaou N 1999 Phys. Rev. B 60 9477
[30] Sakai T 1999 Phys. Rev. B 60 6238
计量
- 文章访问数: 7240
- PDF下载量: 497
- 被引次数: 0