搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受迫Holmes-Duffing系统安全域分形及时滞速度反馈控制

尚慧琳

引用本文:
Citation:

受迫Holmes-Duffing系统安全域分形及时滞速度反馈控制

尚慧琳

Fractal eroded safe basins in a forced Holmes-Duffing system and its control by delayed velocity feedback

Shang Hui-Lin
PDF
导出引用
  • 以受迫Holmes-Duffing系统为研究对象, 对系统施加时滞速度反馈控制, 研究周期激励引起的系统安全域的分形侵蚀及时滞速度反馈对分形侵蚀安全盆的控制作用. 利用Melnikov函数法给出时滞受控系统的安全盆的边界分形条件. 再以时滞量为变参数, 运用四阶Runge-Kutta方法和点映射方法数值研究了时滞对受控系统安全盆的影响规律. 结果表明在弱反馈下, 时滞量的增大能够提高安全盆边界分形的阈值, 从而抑制安全盆的分形侵蚀. 说明时滞速度反馈能够有效抑制系统的安全盆侵蚀.
    A forced Holmes-Duffing system is considered in this paper. A delayed velocity feedback is opplied to the system. The erosion of safe basin, caused by the periodic excitation, and the effects of delayed velocity feedback on the controlling of the fractal eroded safe basin are investigated. The conditions of fractal erosion of the basin boundary are obtained by the Melnikov method. Then considering the time delay as a variable parameter, the evolutions of safe basin with time delay are presented numerically by the 4th Runge-Kutta and the point-to-point mapping method. It is found that the increase of time delay can enhance the threshold of the fractal erosion of the basin boundary under a weak and positive feedback gain so as to reduce the basin erosion. These imply that the delayed velocity feedback can control the basin erosion of the system effectively.
    • 基金项目: 国家自然科学基金(批准号: 10902071);上海市教委晨光计划(批准号: 11CG61);上海应用技术学院科学技术发展基金(批准号: KJ2011-06)和上海市教育委员会重点学科建设项目(批准号: J51501)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10902071), the "Twilight" Program of Shanghai Education Commission, China (Grant No. 11CG61), Foundation of Science and Technology of Shanghai Institute of Technology, China (Grant No. KJ2011-06), and Shanghai Leading Academic Discipline Program, China (Grant No. J51501).
    [1]

    Thompson J M T, Rainey F C T, Soliman M S 1995 Philosophical Transactions of the Royal Society 332 149

    [2]

    Soliman M S 1995 J. Sound Vib. 182 618

    [3]

    Gu J Y, Miao Z H 2005 Journal of Jiangsu University of Science and Technology (Natural Science Edition) 19 6 (in Chinese) [谷家扬, 缪振华 2005 江苏科技大学学报(自然科学版) 19 6]

    [4]

    Long Z J, Lee S K, Kim J Y 2010 Ocean Engineering 37 418

    [5]

    Marcos S H C, Lopes S R, Viana R L 2003 Chaos, Solitons and Fractals 15 417

    [6]

    Lewis C P, Ucar A, Bishop S R 1998 Transactions of the Institute of Measurement and Control 20 29

    [7]

    Zhang Q, Wang B H, Yang C W 2005 Power System Technology 29 63 (in Chinese) [张强, 王宝华, 杨成梧 2005 电网技术 29 63]

    [8]

    Fadi M A, Mohammad I Y, Hassen M O 2009 Smart Material Structure 19 045013

    [9]

    Lenci S, Rega G 2006 J. Micromechanics and Microengineering 16 390

    [10]

    Fadi M A, Mohammad I Y 2010 Smart Material Structure 19 035016

    [11]

    Shang H L, Xu J 2009 Chaos, Solitons and Fractals 41 1880

    [12]

    Shang H L 2011 Chin. Phys. Lett. 28 010502

    [13]

    Shang H L 2011 Acta Phys. Sin. 60 070501 (in Chinese) [尚慧琳 2011 60 070501]

    [14]

    Sun Z K, Xu W, Yang X L, Fang T 2006 Chaos, Solitons and Fractals 27 705

    [15]

    Gan C B 2006 Nonlin. Dyn. 45 305

    [16]

    Gan C B, He S M 2007 Acta Mech. Sin. 23 577

    [17]

    Stephen W 2003 Introduction to Applied Nonlinear Dynamical Systems and Chaos (2nd Ed.) (New York: Springer-Verlag) p62

    [18]

    Hu H Y 2000 Applied Nonlinear Dynamics (Beijing: Aviation Industry Press) p176 (in Chinese) [胡海岩 2000 应用非线性动力学 (北京: 航空工业出版社) 第176页]

  • [1]

    Thompson J M T, Rainey F C T, Soliman M S 1995 Philosophical Transactions of the Royal Society 332 149

    [2]

    Soliman M S 1995 J. Sound Vib. 182 618

    [3]

    Gu J Y, Miao Z H 2005 Journal of Jiangsu University of Science and Technology (Natural Science Edition) 19 6 (in Chinese) [谷家扬, 缪振华 2005 江苏科技大学学报(自然科学版) 19 6]

    [4]

    Long Z J, Lee S K, Kim J Y 2010 Ocean Engineering 37 418

    [5]

    Marcos S H C, Lopes S R, Viana R L 2003 Chaos, Solitons and Fractals 15 417

    [6]

    Lewis C P, Ucar A, Bishop S R 1998 Transactions of the Institute of Measurement and Control 20 29

    [7]

    Zhang Q, Wang B H, Yang C W 2005 Power System Technology 29 63 (in Chinese) [张强, 王宝华, 杨成梧 2005 电网技术 29 63]

    [8]

    Fadi M A, Mohammad I Y, Hassen M O 2009 Smart Material Structure 19 045013

    [9]

    Lenci S, Rega G 2006 J. Micromechanics and Microengineering 16 390

    [10]

    Fadi M A, Mohammad I Y 2010 Smart Material Structure 19 035016

    [11]

    Shang H L, Xu J 2009 Chaos, Solitons and Fractals 41 1880

    [12]

    Shang H L 2011 Chin. Phys. Lett. 28 010502

    [13]

    Shang H L 2011 Acta Phys. Sin. 60 070501 (in Chinese) [尚慧琳 2011 60 070501]

    [14]

    Sun Z K, Xu W, Yang X L, Fang T 2006 Chaos, Solitons and Fractals 27 705

    [15]

    Gan C B 2006 Nonlin. Dyn. 45 305

    [16]

    Gan C B, He S M 2007 Acta Mech. Sin. 23 577

    [17]

    Stephen W 2003 Introduction to Applied Nonlinear Dynamical Systems and Chaos (2nd Ed.) (New York: Springer-Verlag) p62

    [18]

    Hu H Y 2000 Applied Nonlinear Dynamics (Beijing: Aviation Industry Press) p176 (in Chinese) [胡海岩 2000 应用非线性动力学 (北京: 航空工业出版社) 第176页]

  • [1] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电.  , 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [2] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究.  , 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [3] 陈书赢, 王海斗, 徐滨士, 康嘉杰. 基于分形理论的超音速等离子喷涂层界面结合行为研究.  , 2014, 63(15): 156801. doi: 10.7498/aps.63.156801
    [4] 蔡建超, 郭士礼, 游利军, 胡祥云. 裂缝-孔隙型双重介质油藏渗吸机理的分形分析.  , 2013, 62(1): 014701. doi: 10.7498/aps.62.014701
    [5] 行鸿彦, 龚平, 徐伟. 海杂波背景下小目标检测的分形方法.  , 2012, 61(16): 160504. doi: 10.7498/aps.61.160504
    [6] 林颖璐, 闫振纲, 杨娟, 王春勇, 卞保民. 噪声信号特征量分布函数相似特性的研究.  , 2012, 61(10): 100505. doi: 10.7498/aps.61.100505
    [7] 杨娟, 卞保民, 闫振纲, 王春勇, 李振华. 典型随机信号特征参数统计分布的分形特性.  , 2011, 60(10): 100506. doi: 10.7498/aps.60.100506
    [8] 杨娟, 卞保民, 彭刚, 李振华. 随机信号双参数脉冲模型的分形特征.  , 2011, 60(1): 010508. doi: 10.7498/aps.60.010508
    [9] 尚慧琳. 时滞位移反馈对Helmholtz振子系统的分形侵蚀安全域的控制.  , 2011, 60(7): 070501. doi: 10.7498/aps.60.070501
    [10] 赵洪涌, 陈凌, 于小红. 一类惯性神经网络的分岔与控制.  , 2011, 60(7): 070202. doi: 10.7498/aps.60.070202
    [11] 刘耀民, 刘中良, 黄玲艳. 分形理论结合相变动力学的冷表面结霜过程模拟.  , 2010, 59(11): 7991-7997. doi: 10.7498/aps.59.7991
    [12] 张丽, 刘树堂. 薄板热扩散分形生长的环境干扰控制.  , 2010, 59(11): 7708-7712. doi: 10.7498/aps.59.7708
    [13] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响.  , 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [14] 姜泽辉, 赵海发, 郑瑞华. 完全非弹性蹦球倍周期运动的分形特征.  , 2009, 58(11): 7579-7583. doi: 10.7498/aps.58.7579
    [15] 孟田华, 赵国忠, 张存林. 亚波长分形结构太赫兹透射增强的机理研究.  , 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
    [16] 李 彤, 商朋见. 多重分形在掌纹识别中的研究.  , 2007, 56(8): 4393-4400. doi: 10.7498/aps.56.4393
    [17] 疏学明, 方 俊, 申世飞, 刘勇进, 袁宏永, 范维澄. 火灾烟雾颗粒凝并分形特性研究.  , 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
    [18] 王理, 黎坚, 杨亚江. 水分子凝胶中有机凝胶因子聚集体的分形结构研究.  , 2004, 53(1): 160-164. doi: 10.7498/aps.53.160
    [19] 刘海文, 孙晓玮, 李征帆, 钱 蓉, 周 旻. 基于分形特征和双层光子带隙结构的宽阻带低通滤波器.  , 2003, 52(12): 3082-3086. doi: 10.7498/aps.52.3082
    [20] 齐红基, 黄立华, 邵建达, 范正修. Kuramoto-Sivashinsky与Karda-Parisi-Zhang模型中生长界面分形特性研究.  , 2003, 52(11): 2743-2749. doi: 10.7498/aps.52.2743
计量
  • 文章访问数:  6834
  • PDF下载量:  386
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-29
  • 修回日期:  2012-06-24
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map