搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时标正弦动力学方程稳定性与分岔分析

胡文 赵广浩 张弓 张景乔 刘贤龙

引用本文:
Citation:

时标正弦动力学方程稳定性与分岔分析

胡文, 赵广浩, 张弓, 张景乔, 刘贤龙

Stabilities and bifurcations of sine dynamic equations on time scale

Hu Wen, Zhao Guang-Hao, Zhang Gong, Zhang Jing-Qiao, Liu Xian-Long
PDF
导出引用
  • 本文研究时标上正弦动力学方程的平衡点稳定性和分岔现象. 研究表明随时标参数的变化,正弦动力学方程展现出完全不同的解, 会产生n倍周期分岔和平衡点分裂等特有现象.同时,不增加系统参数, 仅改变时标的复杂性就能扩展动力学方程处于混沌状态的参数空间, 这为时标上动力学方程在混沌加密和雷达波形设计等领域的应用提供了潜在的优势.
    A time scale is a nonempty closed subset of the real numbers R. Recently, the dynamic equations on time scale have received much attention, which have the generalized forms of differential and differential dynamic equations. In this paper, we study the stabilities of fixed points and bifurcations of the sine dynamic equations on time scale. The results show that the solutions of the sine dynamic equations become different with the time scale parameter changing. And n-period-doubling bifurcations and splits of fixed points are observed. Moreover, the chaotic parameter spaces of the dynamic equations are expanded by the increase of complexity of time scale but without increasing the system parameter, thus providing a potential advantage for chaos encryption, radar waveform design and other application areas.
    • 基金项目: 国家自然科学基金(批准号: 61071163, 61001151); 南京航空航天大学科研启动金, 南京航空航天大学基本科研业务费专项科研项目(批准号: NS2010096) 和航空科学基金(批准号: 2009ZC52038, 2008ZC52026)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61071163, 61001151), the Nanjing University of Aeronautics and Astronautics, Scientific Research Fund, the NUAA Research Funding (Grant No. NS2010096), and the Aeronautical Science Foundations of China (Grant Nos. 2009ZC52038, 2008ZC52026).
    [1]

    Schell M, Fraser S, Kapral R 1983 Physical Review A 28 373

    [2]

    Chirikov B V 1979 Physics reports 52 263

    [3]

    Huberman B A 1980 Appl. Phys. Lett. 37 750

    [4]

    Winfree A T 2001 The geometry of biological time(New York: Springer) p101

    [5]

    Larger L, Udaltsov V S, Poinsot S 2005 Journal of optical technology 72 378

    [6]

    Jie X, Ke-Ping L, Dani Le F 2010 Chinese Physics Letters 27 020504

    [7]

    Tarasov V E, Edelman M 2010 Chaos: An Interdisciplinary Journal of Nonlinear Science 20 023127

    [8]

    Arnol'd V I 1961 Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 25 21

    [9]

    Feigenbaum M J, Kadanoff L P, Shenker S J 1982 Physica D: Nonlinear Phenomena5 370

    [10]

    Ruelle D, Takens F 1971 Commun. Math. Phys. 20 167

    [11]

    Glass L, Perez R 1982 Physical Review Letters 48 1772

    [12]

    Schell M, Fraser S, Kapral R 1982 Physical Review A 26 504

    [13]

    Fraser S, Kapral R 1982 Physical Review A 25 3223

    [14]

    Chang S J, Wortis M, Wright J A 1981 Physical Review A 24 2669

    [15]

    Xu J, Long K P, Fournier-Prunaret D 2010 Chinese Phys. Lett. 27 080506

    [16]

    Lalescu C C 2010 Arxiv preprint arXiv 1011 6552

    [17]

    Afsar O, Tirnakli U 2010 Physical Review E 82 046210

    [18]

    Nayak C R, Gupte N 2010 Arxiv preprint arXiv 1011 5492

    [19]

    Santhiah M, Philominathan P 2010 Pramana 75 403

    [20]

    Xu J, Charg P, Fournier-Prunaret D 2010 SCIENCE CHINA Information Sciences 53 129

    [21]

    Agarwal R, Bohner M, O'regan D 2002 Journal of Computational and Applied Mathematics 141 1

    [22]

    Agarwal D 2000 Applied Mathematics Letters 13 7

    [23]

    Peterson A C, Raffoul Y N 2005 Advances in Difference Equations 2005 133

    [24]

    Hoffacker J, Tisdell C C 2005 Computers & Mathematics with Applications 49 1327

    [25]

    Li T, Han Z, Sun S 2009 Electronic Journal of Qualitative Theory of Differential Equations 60 1

    [26]

    Grace S R, Agarwal R P, Kaymak Alan B 2010 Journal of Applied Mathematics and Computing 32 205

    [27]

    Alvarez G, Li S 2006 International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 16 2129

    [28]

    Willsey M S, Cuoco K M, Oppenheim A V 2011 Aerospace and Electronic Systems, IEEE Transactions on, Cambridge, July 2011, p1974

  • [1]

    Schell M, Fraser S, Kapral R 1983 Physical Review A 28 373

    [2]

    Chirikov B V 1979 Physics reports 52 263

    [3]

    Huberman B A 1980 Appl. Phys. Lett. 37 750

    [4]

    Winfree A T 2001 The geometry of biological time(New York: Springer) p101

    [5]

    Larger L, Udaltsov V S, Poinsot S 2005 Journal of optical technology 72 378

    [6]

    Jie X, Ke-Ping L, Dani Le F 2010 Chinese Physics Letters 27 020504

    [7]

    Tarasov V E, Edelman M 2010 Chaos: An Interdisciplinary Journal of Nonlinear Science 20 023127

    [8]

    Arnol'd V I 1961 Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 25 21

    [9]

    Feigenbaum M J, Kadanoff L P, Shenker S J 1982 Physica D: Nonlinear Phenomena5 370

    [10]

    Ruelle D, Takens F 1971 Commun. Math. Phys. 20 167

    [11]

    Glass L, Perez R 1982 Physical Review Letters 48 1772

    [12]

    Schell M, Fraser S, Kapral R 1982 Physical Review A 26 504

    [13]

    Fraser S, Kapral R 1982 Physical Review A 25 3223

    [14]

    Chang S J, Wortis M, Wright J A 1981 Physical Review A 24 2669

    [15]

    Xu J, Long K P, Fournier-Prunaret D 2010 Chinese Phys. Lett. 27 080506

    [16]

    Lalescu C C 2010 Arxiv preprint arXiv 1011 6552

    [17]

    Afsar O, Tirnakli U 2010 Physical Review E 82 046210

    [18]

    Nayak C R, Gupte N 2010 Arxiv preprint arXiv 1011 5492

    [19]

    Santhiah M, Philominathan P 2010 Pramana 75 403

    [20]

    Xu J, Charg P, Fournier-Prunaret D 2010 SCIENCE CHINA Information Sciences 53 129

    [21]

    Agarwal R, Bohner M, O'regan D 2002 Journal of Computational and Applied Mathematics 141 1

    [22]

    Agarwal D 2000 Applied Mathematics Letters 13 7

    [23]

    Peterson A C, Raffoul Y N 2005 Advances in Difference Equations 2005 133

    [24]

    Hoffacker J, Tisdell C C 2005 Computers & Mathematics with Applications 49 1327

    [25]

    Li T, Han Z, Sun S 2009 Electronic Journal of Qualitative Theory of Differential Equations 60 1

    [26]

    Grace S R, Agarwal R P, Kaymak Alan B 2010 Journal of Applied Mathematics and Computing 32 205

    [27]

    Alvarez G, Li S 2006 International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 16 2129

    [28]

    Willsey M S, Cuoco K M, Oppenheim A V 2011 Aerospace and Electronic Systems, IEEE Transactions on, Cambridge, July 2011, p1974

  • [1] 赵武, 张鸿斌, 孙超凡, 黄丹, 范俊锴. 受垂直激励和水平约束的单摆系统亚谐共振分岔与混沌.  , 2021, 70(24): 240202. doi: 10.7498/aps.70.20210953
    [2] 王斌, 薛建议, 贺好艳, 朱德兰. 基于线性矩阵不等式的一类新羽翼倍增混沌分析与控制.  , 2014, 63(21): 210502. doi: 10.7498/aps.63.210502
    [3] 向俊杰, 毕闯, 向勇, 张千, 王京梅. 峰值电流模式控制同步开关Z源变换器的动力学研究.  , 2014, 63(12): 120507. doi: 10.7498/aps.63.120507
    [4] 张方樱, 杨汝, 龙晓莉, 谢陈跃, 陈虹. V2控制Buck变换器分岔与混沌行为的机理及镇定.  , 2013, 62(21): 218404. doi: 10.7498/aps.62.218404
    [5] 孟宗, 付立元, 宋明厚. 一类非线性相对转动系统的组合谐波分岔行为研究.  , 2013, 62(5): 054501. doi: 10.7498/aps.62.054501
    [6] 刘洪臣, 王云, 苏振霞. 单相三电平H桥逆变器分岔现象的研究.  , 2013, 62(24): 240506. doi: 10.7498/aps.62.240506
    [7] 丁虎, 严巧赟, 陈立群. 轴向加速运动黏弹性梁受迫振动中的混沌动力学.  , 2013, 62(20): 200502. doi: 10.7498/aps.62.200502
    [8] 季颖, 毕勤胜. 高维广义蔡氏电路中的快慢动力学行为及其分岔分析.  , 2012, 61(1): 010202. doi: 10.7498/aps.61.010202
    [9] 李海滨, 王博华, 张志强, 刘爽, 李延树. 一类非线性相对转动系统的组合共振分岔与混沌.  , 2012, 61(9): 094501. doi: 10.7498/aps.61.094501
    [10] 古华光, 朱洲, 贾冰. 一类新的混沌神经放电的动力学特征的实验和数学模型研究.  , 2011, 60(10): 100505. doi: 10.7498/aps.60.100505
    [11] 陈章耀, 毕勤胜. Jerk系统耦合的分岔和混沌行为.  , 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [12] 张晓芳, 陈章耀, 毕勤胜. 非线性电路通向混沌的演化过程.  , 2010, 59(5): 3057-3065. doi: 10.7498/aps.59.3057
    [13] 包伯成, 康祝圣, 许建平, 胡文. 含指数项广义平方映射的分岔和吸引子.  , 2009, 58(3): 1420-1431. doi: 10.7498/aps.58.1420
    [14] 侯东晓, 刘彬, 时培明. 一类滞后相对转动动力学方程的分岔特性及其解析近似解.  , 2009, 58(9): 5942-5949. doi: 10.7498/aps.58.5942
    [15] 于万波, 魏小鹏. 一个小波函数指数参数变化的分岔现象.  , 2006, 55(8): 3969-3973. doi: 10.7498/aps.55.3969
    [16] 张 维, 周淑华, 任 勇, 山秀明. Turbo译码算法的分岔与控制.  , 2006, 55(2): 622-627. doi: 10.7498/aps.55.622
    [17] 马西奎, 杨 梅, 邹建龙, 王玲桃. 一种时延范德波尔电磁系统中的复杂行为(Ⅰ)——分岔与混沌现象.  , 2006, 55(11): 5648-5656. doi: 10.7498/aps.55.5648
    [18] 李 明, 马西奎, 戴 栋, 张 浩. 基于符号序列描述的一类分段光滑系统中分岔现象与混沌分析.  , 2005, 54(3): 1084-1091. doi: 10.7498/aps.54.1084
    [19] 罗晓曙, 汪秉宏, 陈关荣, 全宏俊, 方锦清, 邹艳丽, 蒋品群. DC-DC buck变换器的分岔行为及混沌控制研究.  , 2003, 52(1): 12-17. doi: 10.7498/aps.52.12
    [20] 郝建红, 丁 武. 行波管放大器中辐射场的极限环振荡和混沌.  , 2003, 52(4): 906-910. doi: 10.7498/aps.52.906
计量
  • 文章访问数:  6622
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-19
  • 修回日期:  2012-02-25
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map