-
采用二维、自洽的PIC/MCC (particle-in-cell with Monte Carlo collision) 方法,模拟了磁控溅射辉光放电过程, 重点讨论了工作参数对放电模式和放电电流的影响. 模拟结果表明, 当工作气压由小到大或空间磁场从强到弱变化时, 放电模式会从阴极空间电荷主导的放电模式过渡到阳极空间电荷主导 的放电模式.在过渡状态,对应的工作气压与磁通密度分别为0.67 Pa和0.05 T; 随着工作气压的增大,放电电流先增大后趋向平衡,当工作气压超过2.5 Pa时,电流开始随工作气压的增大而减小; 而阴极电压增大时,放电电流近似线性增加.In this paper, the process of glow discharge in magnetron sputtering is studied by the particle-in-cell with Monte Carlo collision method. The proposed model is a two-dimensional and self-consistent approach. The results show that the discharge mode transits from the negative space-charge-dominated mode to positive space-charge-dominated mode with working pressure increasing or magnetic field weakening. At the transition state, working pressure and magnetic field are 0.67 Pa and 0.05 T, respectively. Discharge current increases as the cathode voltage increases. When pressure increases, discharge current first increases and then tends to balance. When the pressure is higher than 2.5 Pa, current begins to decreases with the increase of the pressure.
-
Keywords:
- magnetron sputtering /
- glow discharge /
- computer simulation /
- state distribution
[1] Shon C H, Lee J K 2002 Appl. Surf. Sci. 192 258
[2] Kolev I, Bogaerts A 2009 J. Vac. Sci. Technol. A 27 20
[3] Li Y P, Liu Z T, Zhao H L, Liu W T, Yan F 2007 Acta Phys. Sin. 56 2937 (in Chinese) [李阳平, 刘正堂, 赵海龙, 刘文婷, 闫峰 2007 56 2937]
[4] Verboncoeur J P 2005 Plasma Phys. Contr. Fusion 47 A231
[5] Jin X L, Yang Z H 2006 Acta Phys. Sin. 55 5930 (in Chinese) [金晓林, 杨中海 2006 55 5930]
[6] Birdsall C K, Langdon A B 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill) p7
[7] Boswell R W, Morey I J 1988 Appl. Phys. Lett. 52 21
[8] Shon C H, Lee J K 1998 IEEE Trans. Plasma Sci. 26 1635
[9] Zhao H Y, Mu Z X 2008 Chin. Phys. B 17 1475
[10] Wasa K, Kitabatake M 2003 Thin Film Materials Technology (Berlin: Springer Publishing) p130
[11] Straaten T A, Cramer N F 1998 Appl. Phys. 31 177
[12] Kawamura E, Birdsall C K, Vahedi V 2000 Plasma Sources Sci. Technol. 9 413
[13] Yang C, Liu D G, Wang X M, Liu L Q, Wang X Q, Liu S G 2012 Acta Phys. Sin. (in Chinese) 61 145204 [杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲 2012 61 145204]
[14] Yuan Z C, Shi J M, Huang Y, Ma L 2008 Nuclear Fusion and Plasma Physics 28 281 (in Chinese) [袁忠才, 时家明, 黄勇, 马柳 2008 核聚变与等离子体物理 28 281]
-
[1] Shon C H, Lee J K 2002 Appl. Surf. Sci. 192 258
[2] Kolev I, Bogaerts A 2009 J. Vac. Sci. Technol. A 27 20
[3] Li Y P, Liu Z T, Zhao H L, Liu W T, Yan F 2007 Acta Phys. Sin. 56 2937 (in Chinese) [李阳平, 刘正堂, 赵海龙, 刘文婷, 闫峰 2007 56 2937]
[4] Verboncoeur J P 2005 Plasma Phys. Contr. Fusion 47 A231
[5] Jin X L, Yang Z H 2006 Acta Phys. Sin. 55 5930 (in Chinese) [金晓林, 杨中海 2006 55 5930]
[6] Birdsall C K, Langdon A B 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill) p7
[7] Boswell R W, Morey I J 1988 Appl. Phys. Lett. 52 21
[8] Shon C H, Lee J K 1998 IEEE Trans. Plasma Sci. 26 1635
[9] Zhao H Y, Mu Z X 2008 Chin. Phys. B 17 1475
[10] Wasa K, Kitabatake M 2003 Thin Film Materials Technology (Berlin: Springer Publishing) p130
[11] Straaten T A, Cramer N F 1998 Appl. Phys. 31 177
[12] Kawamura E, Birdsall C K, Vahedi V 2000 Plasma Sources Sci. Technol. 9 413
[13] Yang C, Liu D G, Wang X M, Liu L Q, Wang X Q, Liu S G 2012 Acta Phys. Sin. (in Chinese) 61 145204 [杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲 2012 61 145204]
[14] Yuan Z C, Shi J M, Huang Y, Ma L 2008 Nuclear Fusion and Plasma Physics 28 281 (in Chinese) [袁忠才, 时家明, 黄勇, 马柳 2008 核聚变与等离子体物理 28 281]
计量
- 文章访问数: 8742
- PDF下载量: 587
- 被引次数: 0